Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_batchtrain.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [sMap,sTrain] = som_batchtrain(sMap, D, varargin) %SOM_BATCHTRAIN Use batch algorithm to train the Self-Organizing Map. % % [sM,sT] = som_batchtrain(sM, D, [argID, value, ...]) % % sM = som_batchtrain(sM,D); % sM = som_batchtrain(sM,sD,'radius',[10 3 2 1 0.1],'tracking',3); % [M,sT] = som_batchtrain(M,D,'ep','msize',[10 3],'hexa'); % % Input and output arguments ([]'s are optional): % sM (struct) map struct, the trained and updated map is returned % (matrix) codebook matrix of a self-organizing map % size munits x dim or msize(1) x ... x msize(k) x dim % The trained map codebook is returned. % D (struct) training data; data struct % (matrix) training data, size dlen x dim % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % sT (struct) learning parameters used during the training % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding argID. % 'mask' (vector) BMU search mask, size dim x 1 % 'msize' (vector) map size % 'radius' (vector) neighborhood radiuses, length 1, 2 or trainlen % 'radius_ini' (scalar) initial training radius % 'radius_fin' (scalar) final training radius % 'tracking' (scalar) tracking level, 0-3 % 'trainlen' (scalar) training length in epochs % 'train' *(struct) train struct, parameters for training % 'sTrain','som_train' = 'train' % 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'lattice' *(string) map lattice, 'hexa' or 'rect' % 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid' % 'weights' (vector) sample weights: each sample is weighted % % For more help, try 'type som_batchtrain' or check out online documentation. % See also SOM_MAKE, SOM_SEQTRAIN, SOM_TRAIN_STRUCT. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_batchtrain % % PURPOSE % % Trains a Self-Organizing Map using the batch algorithm. % % SYNTAX % % sM = som_batchtrain(sM,D); % sM = som_batchtrain(sM,sD); % sM = som_batchtrain(...,'argID',value,...); % sM = som_batchtrain(...,value,...); % [sM,sT] = som_batchtrain(M,D,...); % % DESCRIPTION % % Trains the given SOM (sM or M above) with the given training data % (sD or D) using batch training algorithm. If no optional arguments % (argID, value) are given, a default training is done. Using optional % arguments the training parameters can be specified. Returns the % trained and updated SOM and a train struct which contains % information on the training. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 127-128. % Kohonen, T., "Things you haven't heard about the Self-Organizing % Map", In proceedings of International Conference % on Neural Networks (ICNN), San Francisco, 1993, pp. 1147-1156. % % KNOWN BUGS % % Batchtrain does not work correctly for a map with a single unit. % This is because of the way 'min'-function works. % % REQUIRED INPUT ARGUMENTS % % sM The map to be trained. % (struct) map struct % (matrix) codebook matrix (field .data of map struct) % Size is either [munits dim], in which case the map grid % dimensions (msize) should be specified with optional arguments, % or [msize(1) ... msize(k) dim] in which case the map % grid dimensions are taken from the size of the matrix. % Lattice, by default, is 'rect' and shape 'sheet'. % D Training data. % (struct) data struct % (matrix) data matrix, size [dlen dim] % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is % used. The valid IDs and corresponding values are listed below. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % % Below is the list of valid arguments: % 'mask' (vector) BMU search mask, size dim x 1. Default is % the one in sM (field '.mask') or a vector of % ones if only a codebook matrix was given. % 'msize' (vector) map grid dimensions. Default is the one % in sM (field sM.topol.msize) or % 'si = size(sM); msize = si(1:end-1);' % if only a codebook matrix was given. % 'radius' (vector) neighborhood radius % length = 1: radius_ini = radius % length = 2: [radius_ini radius_fin] = radius % length > 2: the vector given neighborhood % radius for each step separately % trainlen = length(radius) % 'radius_ini' (scalar) initial training radius % 'radius_fin' (scalar) final training radius % 'tracking' (scalar) tracking level: 0, 1 (default), 2 or 3 % 0 - estimate time % 1 - track time and quantization error % 2 - plot quantization error % 3 - plot quantization error and two first % components % 'trainlen' (scalar) training length in epochs % 'train' *(struct) train struct, parameters for training. % Default parameters, unless specified, % are acquired using SOM_TRAIN_STRUCT (this % also applies for 'trainlen', 'radius_ini' % and 'radius_fin'). % 'sTrain', 'som_topol' (struct) = 'train' % 'neigh' *(string) The used neighborhood function. Default is % the one in sM (field '.neigh') or 'gaussian' % if only a codebook matrix was given. Other % possible values is 'cutgauss', 'ep' and 'bubble'. % 'topol' *(struct) topology of the map. Default is the one % in sM (field '.topol'). % 'sTopol', 'som_topol' (struct) = 'topol' % 'lattice' *(string) map lattice. Default is the one in sM % (field sM.topol.lattice) or 'rect' % if only a codebook matrix was given. % 'shape' *(string) map shape. Default is the one in sM % (field sM.topol.shape) or 'sheet' % if only a codebook matrix was given. % 'weights' (vector) weight for each data vector: during training, % each data sample is weighted with the corresponding % value, for example giving weights = [1 1 2 1] % would have the same result as having third sample % appear 2 times in the data % % OUTPUT ARGUMENTS % % sM the trained map % (struct) if a map struct was given as input argument, a % map struct is also returned. The current training % is added to the training history (sM.trainhist). % The 'neigh' and 'mask' fields of the map struct % are updated to match those of the training. % (matrix) if a matrix was given as input argument, a matrix % is also returned with the same size as the input % argument. % sT (struct) train struct; information of the accomplished training % % EXAMPLES % % Simplest case: % sM = som_batchtrain(sM,D); % sM = som_batchtrain(sM,sD); % % To change the tracking level, 'tracking' argument is specified: % sM = som_batchtrain(sM,D,'tracking',3); % % The change training parameters, the optional arguments 'train','neigh', % 'mask','trainlen','radius','radius_ini' and 'radius_fin' are used. % sM = som_batchtrain(sM,D,'neigh','cutgauss','trainlen',10,'radius_fin',0); % % Another way to specify training parameters is to create a train struct: % sTrain = som_train_struct(sM,'dlen',size(D,1)); % sTrain = som_set(sTrain,'neigh','cutgauss'); % sM = som_batchtrain(sM,D,sTrain); % % By default the neighborhood radius goes linearly from radius_ini to % radius_fin. If you want to change this, you can use the 'radius' argument % to specify the neighborhood radius for each step separately: % sM = som_batchtrain(sM,D,'radius',[5 3 1 1 1 1 0.5 0.5 0.5]); % % You don't necessarily have to use the map struct, but you can operate % directly with codebook matrices. However, in this case you have to % specify the topology of the map in the optional arguments. The % following commads are identical (M is originally a 200 x dim sized matrix): % M = som_batchtrain(M,D,'msize',[20 10],'lattice','hexa','shape','cyl'); % or % M = som_batchtrain(M,D,'msize',[20 10],'hexa','cyl'); % or % sT= som_set('som_topol','msize',[20 10],'lattice','hexa','shape','cyl'); % M = som_batchtrain(M,D,sT); % or % M = reshape(M,[20 10 dim]); % M = som_batchtrain(M,D,'hexa','cyl'); % % The som_batchtrain also returns a train struct with information on the % accomplished training. This struct is also added to the end of the % trainhist field of map struct, in case a map struct was given. % [M,sTrain] = som_batchtrain(M,D,'msize',[20 10]); % [sM,sTrain] = som_batchtrain(sM,D); % sM.trainhist{end}==sTrain % % SEE ALSO % % som_make Initialize and train a SOM using default parameters. % som_seqtrain Train SOM with sequential algorithm. % som_train_struct Determine default training parameters. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 071197 041297 % Version 2.0beta juuso 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(2, Inf, nargin)); % check the number of input arguments % map struct_mode = isstruct(sMap); if struct_mode, sTopol = sMap.topol; else orig_size = size(sMap); if ndims(sMap) > 2, si = size(sMap); dim = si(end); msize = si(1:end-1); M = reshape(sMap,[prod(msize) dim]); else msize = [orig_size(1) 1]; dim = orig_size(2); end sMap = som_map_struct(dim,'msize',msize); sTopol = sMap.topol; end [munits dim] = size(sMap.codebook); % data if isstruct(D), data_name = D.name; D = D.data; else data_name = inputname(2); end nonempty = find(sum(isnan(D),2) < dim); D = D(nonempty,:); % remove empty vectors from the data [dlen ddim] = size(D); % check input dimension if dim ~= ddim, error('Map and data input space dimensions disagree.'); end % varargin sTrain = som_set('som_train','algorithm','batch','neigh', ... sMap.neigh,'mask',sMap.mask,'data_name',data_name); radius = []; tracking = 1; weights = 1; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'msize', i=i+1; sTopol.msize = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case 'mask', i=i+1; sTrain.mask = varargin{i}; case 'neigh', i=i+1; sTrain.neigh = varargin{i}; case 'trainlen', i=i+1; sTrain.trainlen = varargin{i}; case 'tracking', i=i+1; tracking = varargin{i}; case 'weights', i=i+1; weights = varargin{i}; case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i}; case 'radius_fin', i=i+1; sTrain.radius_fin = varargin{i}; case 'radius', i=i+1; l = length(varargin{i}); if l==1, sTrain.radius_ini = varargin{i}; else sTrain.radius_ini = varargin{i}(1); sTrain.radius_fin = varargin{i}(end); if l>2, radius = varargin{i}; end end case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i}; case {'topol','sTopol','som_topol'}, i=i+1; sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end % unambiguous values case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'gaussian','cutgauss','ep','bubble'}, sTrain.neigh = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end case 'som_train', sTrain = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_batchtrain) Ignoring invalid argument #' num2str(i+2)]); end i = i+1; end % take only weights of non-empty vectors if length(weights)>dlen, weights = weights(nonempty); end % trainlen if ~isempty(radius), sTrain.trainlen = length(radius); end % check topology if struct_mode, if ~strcmp(sTopol.lattice,sMap.topol.lattice) | ... ~strcmp(sTopol.shape,sMap.topol.shape) | ... any(sTopol.msize ~= sMap.topol.msize), warning('Changing the original map topology.'); end end sMap.topol = sTopol; % complement the training struct sTrain = som_train_struct(sTrain,sMap,'dlen',dlen); if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize M = sMap.codebook; mask = sTrain.mask; trainlen = sTrain.trainlen; % neighborhood radius if trainlen==1, radius = sTrain.radius_ini; elseif length(radius)<=2, r0 = sTrain.radius_ini; r1 = sTrain.radius_fin; radius = r1 + fliplr((0:(trainlen-1))/(trainlen-1)) * (r0 - r1); else % nil end % distance between map units in the output space % Since in the case of gaussian and ep neighborhood functions, the % equations utilize squares of the unit distances and in bubble case % it doesn't matter which is used, the unitdistances and neighborhood % radiuses are squared. Ud = som_unit_dists(sTopol); Ud = Ud.^2; radius = radius.^2; % zero neighborhood radius may cause div-by-zero error radius(find(radius==0)) = eps; % The training algorithm involves calculating weighted Euclidian distances % to all map units for each data vector. Basically this is done as % for i=1:dlen, % for j=1:munits, % for k=1:dim % Dist(j,i) = Dist(j,i) + mask(k) * (D(i,k) - M(j,k))^2; % end % end % end % where mask is the weighting vector for distance calculation. However, taking % into account that distance between vectors m and v can be expressed as % |m - v|^2 = sum_i ((m_i - v_i)^2) = sum_i (m_i^2 + v_i^2 - 2*m_i*v_i) % this can be made much faster by transforming it to a matrix operation: % Dist = (M.^2)*mask*ones(1,d) + ones(m,1)*mask'*(D'.^2) - 2*M*diag(mask)*D' % Of the involved matrices, several are constant, as the mask and data do % not change during training. Therefore they are calculated beforehand. % For the case where there are unknown components in the data, each data % vector will have an individual mask vector so that for that unit, the % unknown components are not taken into account in distance calculation. % In addition all NaN's are changed to zeros so that they don't screw up % the matrix multiplications and behave correctly in updating step. Known = ~isnan(D); W1 = (mask*ones(1,dlen)) .* Known'; D(find(~Known)) = 0; % constant matrices WD = 2*diag(mask)*D'; % constant matrix dconst = ((D.^2)*mask)'; % constant in distance calculation for each data sample % W2 = ones(munits,1)*mask'; D2 = (D'.^2); % initialize tracking start = clock; qe = zeros(trainlen,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action % With the 'blen' parameter you can control the memory consumption % of the algorithm, which is in practive directly proportional % to munits*blen. If you're having problems with memory, try to % set the value of blen lower. blen = min(munits,dlen); % reserve some space bmus = zeros(1,dlen); ddists = zeros(1,dlen); for t = 1:trainlen, % batchy train - this is done a block of data (inds) at a time % rather than in a single sweep to save memory consumption. % The 'Dist' and 'Hw' matrices have size munits*blen % which - if you have a lot of data - would be HUGE if you % calculated it all at once. A single-sweep version would % look like this: % Dist = (M.^2)*W1 - M*WD; %+ W2*D2 % [ddists, bmus] = min(Dist); % (notice that the W2*D2 term can be ignored since it is constant) % This "batchy" version is the same as single-sweep if blen=dlen. i0 = 0; while i0+1<=dlen, inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen; Dist = (M.^2)*W1(:,inds) - M*WD(:,inds); [ddists(inds), bmus(inds)] = min(Dist); end % tracking if tracking > 0, ddists = ddists+dconst; % add the constant term ddists(ddists<0) = 0; % rounding errors... qe(t) = mean(sqrt(ddists)); trackplot(M,D,tracking,start,t,qe); end % neighborhood % notice that the elements Ud and radius have been squared! % note: 'bubble' matches the original "Batch Map" algorithm switch sTrain.neigh, case 'bubble', H = (Ud<=radius(t)); case 'gaussian', H = exp(-Ud/(2*radius(t))); case 'cutgauss', H = exp(-Ud/(2*radius(t))) .* (Ud<=radius(t)); case 'ep', H = (1-Ud/radius(t)) .* (Ud<=radius(t)); end % update % In principle the updating step goes like this: replace each map unit % by the average of the data vectors that were in its neighborhood. % The contribution, or activation, of data vectors in the mean can % be varied with the neighborhood function. This activation is given % by matrix H. So, for each map unit the new weight vector is % % m = sum_i (h_i * d_i) / sum_i (h_i), % % where i denotes the index of data vector. Since the values of % neighborhood function h_i are the same for all data vectors belonging to % the Voronoi set of the same map unit, the calculation is actually done % by first calculating a partition matrix P with elements p_ij=1 if the % BMU of data vector j is i. P = sparse(bmus,[1:dlen],weights,munits,dlen); % Then the sum of vectors in each Voronoi set are calculated (P*D) and the % neighborhood is taken into account by calculating a weighted sum of the % Voronoi sum (H*). The "activation" matrix A is the denominator of the % equation above. S = H*(P*D); A = H*(P*Known); % If you'd rather make this without using the Voronoi sets try the following: % Hi = H(:,bmus); % S = Hi * D; % "sum_i (h_i * d_i)" % A = Hi * Known; % "sum_i (h_i)" % The bad news is that the matrix Hi has size [munits x dlen]... % only update units for which the "activation" is nonzero nonzero = find(A > 0); M(nonzero) = S(nonzero) ./ A(nonzero); end; % for t = 1:trainlen %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Build / clean up the return arguments % tracking if tracking > 0, fprintf(1,'\n'); end % update structures sTrain = som_set(sTrain,'time',datestr(now,0)); if struct_mode, sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh); tl = length(sMap.trainhist); sMap.trainhist(tl+1) = sTrain; else sMap = reshape(M,orig_size); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions %%%%%%%% function [] = trackplot(M,D,tracking,start,n,qe) l = length(qe); elap_t = etime(clock,start); tot_t = elap_t*l/n; fprintf(1,'\rTraining: %3.0f/ %3.0f s',elap_t,tot_t) switch tracking case 1, case 2, plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) title('Quantization error after each epoch'); drawnow otherwise, subplot(2,1,1), plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) title('Quantization error after each epoch'); subplot(2,1,2), plot(M(:,1),M(:,2),'ro',D(:,1),D(:,2),'b+'); title('First two components of map units (o) and data vectors (+)'); drawnow end % end of trackplot