Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/MIRToolbox/mirregularity.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function varargout = mirregularity(orig,varargin) % i = mirregularity(x) calculates the irregularity of a spectrum, i.e., % the degree of variation of the successive peaks of the spectrum. % Specification of the definition of irregularity: % mirregularity(...,'Jensen') is based on (Jensen, 1999), % where the irregularity is the sum of the square of the % difference in amplitude between adjoining partials. % (Default approach) % mirregularity(...,'Krimphoff') is based on (Krimphoff et al., 1994), % where the irregularity is the sum of the amplitude minus the % mean of the preceding, same and next amplitude. % If the input x is not already a spectrum with peak extracted, the peak % picking is performed prior to the calculation of the irregularity. % In this case the 'Contrast' parameter used in mirpeaks can be % modified, and is set by default to .1. % % [Krimphoff et al. 1994] J. Krimphoff, S. McAdams, S. Winsberg, % Caracterisation du timbre des sons complexes. II Analyses % acoustiques et quantification psychophysique. Journal de Physique % IV, Colloque C5, Vol. 4. 1994. % [Jensen, 1999] K. Jensen, Timbre Models of Musical Sounds, Ph.D. % dissertation, University of Copenhagen, Rapport Nr. 99/7. meth.type = 'String'; meth.default = 'Jensen'; meth.choice = {'Jensen','Krimphoff'}; option.meth = meth; cthr.key = 'Contrast'; cthr.type = 'Integer'; cthr.default = .01; option.cthr = cthr; specif.option = option; varargout = mirfunction(@mirregularity,orig,varargin,nargout,specif,@init,@main); function [x type] = init(x,option) if not(isamir(x,'mirdata')) || isamir(x,'miraudio') x = mirspectrum(x); end if not(haspeaks(x)) x = mirpeaks(x,'Reso','SemiTone','Contrast',option.cthr); %% FIND BETTER end type = 'mirscalar'; function o = main(x,option,postoption) if iscell(x) x = x{1}; end m = get(x,'PeakVal'); p = get(x,'PeakPos'); y = cell(1,length(m)); for h = 1:length(m) y{h} = cell(1,length(m{h})); for k = 1:length(m{h}) y{h}{k} = zeros(size(m{h}{k})); for j = 1:size(m{h}{k},3) for l = 1:size(m{h}{k},2) state = warning('query','MATLAB:divideByZero'); warning('off','MATLAB:divideByZero'); mm = m{h}{k}{1,l,j}; pp = p{h}{k}{1,l,j}; [pp oo] = sort(pp); % Sort peaks in ascending order of x abscissae. mm = mm(oo); if strcmpi(option.meth,'Jensen') y{h}{k}(1,l,j) = sum((mm(2:end,:)-mm(1:end-1,:)).^2)... ./sum(mm.^2); elseif strcmpi(option.meth,'Krimphoff') avrg = filter(ones(3,1),1,mm)/3; y{h}{k}(1,l,j) = log10(sum(abs(mm(2:end-1,:)-avrg(3:end)))); end warning(state.state,'MATLAB:divideByZero'); if isnan(y{h}{k}(1,l,j)) y{h}{k}(1,l,j) = 0; end end end end end if isa(x,'mirspectrum') t = 'Spectral irregularity'; else t = ['Irregularity of ',get(x,'Title')];; end i = mirscalar(x,'Data',y,'Title',t); o = {i,x};