Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/MIRToolbox/mireventdensity.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function varargout = mireventdensity(x,varargin) % e = mireventdensity(x) estimate the mean frequency of events (i.e., how % many note onsets per second) in the temporal data x. % Optional arguments: Option1, Option2 % Tuomas Eerola, 14.08.2008 % normal.type = 'String'; normal.choice = {'Option1','Option2'}; normal.default = 'Option1'; option.normal = normal; frame.key = 'Frame'; frame.type = 'Integer'; frame.number = 2; frame.default = [0 0]; frame.keydefault = [10 1]; option.frame = frame; specif.option = option; specif.defaultframelength = 1.00; specif.defaultframehop = 0.5; %specif.eachchunk = 'Normal'; specif.combinechunk = {'Average','Concat'}; varargout = mirfunction(@mireventdensity,x,varargin,nargout,specif,@init,@main); function [x type] = init(x,option) if not(isamir(x,'mirenvelope')) if option.frame.length.val x = mironsets(x,'Klapuri99', 'Frame',option.frame.length.val,... option.frame.length.unit,... option.frame.hop.val,... option.frame.hop.unit); else x = mironsets(x,'Klapuri99'); end end type = 'mirscalar'; function e = main(o,option,postoption) if iscell(o) o = o{1}; end sr = get(o,'Sampling'); p = mirpeaks(o); %%%%<<<<<<< MORE OPTIONS HERE pv = get(p,'PeakVal'); v = mircompute(@algo,pv,o,option,sr); e = mirscalar(o,'Data',v,'Title','Event density','Unit','per second'); e = {e o}; function e = algo(pv,o,option,sr) nc = size(o,2); nch = size(o,3); e = zeros(1,nc,nch); % for i = 1:nch % for j = 1:nc % if option.root % e(1,j,i) = norm(d(:,j,i)); % else % disp('do the calc...') % % e(1,j,i) = d(:,j,i)'*d(:,j,i); % %tmp = mironsets(d,'Filterbank',10,'Contrast',0.1); % Change by TE, was only FB=20, no other params % e2 = mirpeaks(e) % [o1,o2] = mirgetdata(e); % e(1,j,i) = length(o2)/mirgetdata(mirlength(d)); % end % end % end for i = 1:nch for j = 1:nc e(1,j,i) = length(pv{1,j,i}); if strcmpi(option.normal,'Option1') e(1,j,i) = e(1,j,i) *sr/size(o,1); elseif strcmpi(option.normal,'Option2') pvs = pv{1}; high_pvs = length(find(mean(pvs)>pvs)); e(1,j,i) = high_pvs(1,j,i) *sr/size(o,1); % only those which are larger than mean end end end %function [y orig] = eachchunk(orig,option,missing,postchunk) %y = mireventdensity(orig,option); %function y = combinechunk(old,new) %do = mirgetdata(old); %dn = mirgetdata(new); %y = set(old,'ChunkData',do+dn);