Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/MIRToolbox/@miremotion/miremotion.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function varargout = miremotion(orig,varargin) % Predicts emotion along three dimensions and five basic concepts. % Optional parameters: % miremotion(...,'Dimensions',0) excludes all three dimensions. % miremotion(...,'Dimensions',3) includes all three dimensions (default). % miremotion(...,'Activity') includes the 'Activity' dimension. % miremotion(...,'Valence') includes the 'Valence' dimension. % miremotion(...,'Tension') includes the 'Tension' dimension. % miremotion(...,'Dimensions',2) includes 'Activity' and 'Valence'. % miremotion(...,'Arousal') includes 'Activity' and 'Tension'. % miremotion(...,'Concepts',0) excludes all five concepts. % miremotion(...,'Concepts') includes all five concepts (default). % miremotion(...,'Happy') includes the 'Happy' concept. % miremotion(...,'Sad') includes the 'Sad' concept. % miremotion(...,'Tender') includes the 'Tender' concept. % miremotion(...,'Anger') includes the 'Anger' concept. % miremotion(...,'Fear') includes the 'Fear' concept. % miremotion(...,'Frame',...) predict emotion frame by frame. % % Selection of features and coefficients are taken from a study: % Eerola, T., Lartillot, O., and Toiviainen, P. % (2009). Prediction of multidimensional emotional ratings in % music from audio using multivariate regression models. % In Proceedings of 10th International Conference on Music Information Retrieval % (ISMIR 2009), pages 621-626. % % The implemented models are based on multiple linear regression with 5 best % predictors (MLR option in the paper). The box-cox transformations have now been % removed until the normalization values have been established with a large sample of music. % % TODO: Revision of coefficients to (a) force the output range between 0 - 1 and % (b) to be based on alternative models and materials (training sets). % % Updated 03.05.2010 TE % frame.key = 'Frame'; frame.type = 'Integer'; frame.number = 2; frame.default = [0 0]; frame.keydefault = [1 1]; option.frame = frame; dim.key = 'Dimensions'; dim.type = 'Integer'; dim.default = NaN; dim.keydefault = 3; option.dim = dim; activity.key = 'Activity'; activity.type = 'Boolean'; activity.default = NaN; option.activity = activity; valence.key = 'Valence'; valence.type = 'Boolean'; valence.default = NaN; option.valence = valence; tension.key = 'Tension'; tension.type = 'Boolean'; tension.default = NaN; option.tension = tension; arousal.key = 'Arousal'; arousal.type = 'Boolean'; arousal.default = NaN; option.arousal = arousal; concepts.key = 'Concepts'; concepts.type = 'Boolean'; concepts.default = NaN; option.concepts = concepts; happy.key = 'Happy'; happy.type = 'Boolean'; happy.default = NaN; option.happy = happy; sad.key = 'Sad'; sad.type = 'Boolean'; sad.default = NaN; option.sad = sad; tender.key = 'Tender'; tender.type = 'Boolean'; tender.default = NaN; option.tender = tender; anger.key = 'Anger'; anger.type = 'Boolean'; anger.default = NaN; option.anger = anger; fear.key = 'Fear'; fear.type = 'Boolean'; fear.default = NaN; option.fear = fear; specif.option = option; specif.defaultframelength = 1; %specif.defaultframehop = .5; specif.combinechunk = {'Average',@nothing}; specif.extensive = 1; varargout = mirfunction(@miremotion,orig,varargin,nargout,specif,@init,@main); %% function [x type] = init(x,option) option = process(option); if option.frame.length.val hop = option.frame.hop.val; if strcmpi(option.frame.hop.unit,'Hz') hop = 1/hop; option.frame.hop.unit = 's'; end if strcmpi(option.frame.hop.unit,'s') hop = hop*get(x,'Sampling'); end if strcmpi(option.frame.hop.unit,'%') hop = hop/100; option.frame.hop.unit = '/1'; end if strcmpi(option.frame.hop.unit,'/1') hop = hop*option.frame.length.val; end frames = 0:hop:1000000; x = mirsegment(x,[frames;frames+option.frame.length.val]); elseif isa(x,'mirdesign') x = set(x,'NoChunk',1); end rm = mirrms(x,'Frame',.046,.5); le = 0; %mirlowenergy(rm,'ASR'); o = mironsets(x,'Filterbank',15,'Contrast',0.1); at = mirattacktime(o); as = 0; %mirattackslope(o); ed = 0; %mireventdensity(o,'Option1'); fl = mirfluctuation(x,'Summary'); fp = mirpeaks(fl,'Total',1); fc = 0; %mircentroid(fl); tp = 0; %mirtempo(x,'Frame',2,.5,'Autocor','Spectrum'); pc = mirpulseclarity(x,'Frame',2,.5); %%%%%%%%%%% Why 'Frame'?? s = mirspectrum(x,'Frame',.046,.5); sc = mircentroid(s); ss = mirspread(s); sr = mirroughness(s); %ps = mirpitch(x,'Frame',.046,.5,'Tolonen'); c = mirchromagram(x,'Frame','Wrap',0,'Pitch',0); %%%%%%%%%%%%%%%%%%%% Previous frame size was too small. cp = mirpeaks(c,'Total',1); ps = 0;%cp; ks = mirkeystrength(c); [k kc] = mirkey(ks); mo = mirmode(ks); hc = mirhcdf(c); se = mirentropy(mirspectrum(x,'Collapsed','Min',40,'Smooth',70,'Frame',1.5,.5)); %%%%%%%%% Why 'Frame'?? ns = mirnovelty(mirspectrum(x,'Frame',.1,.5,'Max',5000),'Normal',0); nt = mirnovelty(mirchromagram(x,'Frame',.2,.25),'Normal',0); %%%%%%%%%%%%%%%%%%%% Previous frame size was too small. nr = mirnovelty(mirchromagram(x,'Frame',.2,.25,'Wrap',0),'Normal',0); %%%%%%%%%%%%%%%%%%%% Previous frame size was too small. x = {rm,le, at,as,ed, fp,fc, tp,pc, sc,ss,sr, ps, cp,kc,mo,hc, se, ns,nt,nr}; type = {'miremotion','mirscalar','mirscalar',... 'mirscalar','mirscalar','mirscalar',... 'mirspectrum','mirscalar',... 'mirscalar','mirscalar',... 'mirscalar','mirscalar','mirscalar',... 'mirscalar',... 'mirchromagram','mirscalar','mirscalar','mirscalar',... 'mirscalar',... 'mirscalar','mirscalar','mirscalar'}; %% function e = main(x,option,postoption) warning('WARNING IN MIRENOTION: The current model of miremotion is not correctly calibrated with this version of MIRtoolbox (but with version 1.3 only).'); option = process(option); rm = get(x{1},'Data'); %le = get(x{2},'Data'); at = get(x{3},'Data'); %as = get(x{4},'Data'); %ed = get(x{5},'Data'); %fpp = get(x{6},'PeakPosUnit'); fpv = get(x{6},'PeakVal'); %fc = get(x{7},'Data'); %tp = get(x{8},'Data'); pc = get(x{9},'Data'); sc = get(x{10},'Data'); ss = get(x{11},'Data'); rg = get(x{12},'Data'); %ps = get(x{13},'PeakPosUnit'); cp = get(x{14},'PeakPosUnit'); kc = get(x{15},'Data'); mo = get(x{16},'Data'); hc = get(x{17},'Data'); se = get(x{18},'Data'); ns = get(x{19},'Data'); nt = get(x{20},'Data'); nr = get(x{21},'Data'); e.dim = {}; e.dimdata = mircompute(@initialise,rm); if option.activity == 1 [e.dimdata e.activity_fact] = mircompute(@activity,e.dimdata,rm,fpv,sc,ss,se); e.dim = [e.dim,'Activity']; else e.activity_fact = NaN; end if option.valence == 1 [e.dimdata e.valence_fact] = mircompute(@valence,e.dimdata,rm,fpv,kc,mo,ns); e.dim = [e.dim,'Valence']; else e.valence_fact = NaN; end if option.tension == 1 [e.dimdata e.tension_fact] = mircompute(@tension,e.dimdata,rm,fpv,kc,hc,nr); e.dim = [e.dim,'Tension']; else e.tension_fact = NaN; end e.class = {}; e.classdata = mircompute(@initialise,rm); if option.happy == 1 [e.classdata e.happy_fact] = mircompute(@happy,e.classdata,fpv,ss,cp,kc,mo); e.class = [e.class,'Happy']; else e.happy_fact = NaN; end if option.sad == 1 [e.classdata e.sad_fact] = mircompute(@sad,e.classdata,ss,cp,mo,hc,nt); e.class = [e.class,'Sad']; else e.sad_fact = NaN; end if option.tender == 1 [e.classdata e.tender_fact] = mircompute(@tender,e.classdata,sc,rg,kc,hc,ns); e.class = [e.class,'Tender']; else e.tender_fact = NaN; end if option.anger == 1 [e.classdata e.anger_fact] = mircompute(@anger,e.classdata,rg,kc,se,nr); e.class = [e.class,'Anger']; else e.anger_fact = NaN; end if option.fear == 1 [e.classdata e.fear_fact] = mircompute(@fear,e.classdata,rm,at,fpv,kc,mo); e.class = [e.class,'Fear']; else e.fear_fact = NaN; end e = class(e,'miremotion',mirdata(x{1})); e = purgedata(e); fp = mircompute(@noframe,get(x{1},'FramePos')); e = set(e,'Title','Emotion','Abs','emotions','Ord','magnitude','FramePos',fp); %% function option = process(option) if option.arousal==1 option.activity = 1; option.tension = 1; if isnan(option.dim) option.dim = 0; end end if option.activity==1 || option.valence==1 || option.tension==1 if isnan(option.activity) option.activity = 0; end if isnan(option.valence) option.valence = 0; end if isnan(option.tension) option.tension = 0; end if isnan(option.concepts) option.concepts = 0; end end if not(isnan(option.dim)) && option.dim if isnan(option.concepts) option.concepts = 0; end end if not(isnan(option.concepts)) && option.concepts if isnan(option.dim) option.dim = 0; end end if not(isnan(option.dim)) switch option.dim case 0 if isnan(option.activity) option.activity = 0; end if isnan(option.valence) option.valence = 0; end if isnan(option.tension) option.tension = 0; end case 2 option.activity = 1; option.valence = 1; if isnan(option.tension) option.tension = 0; end case 3 option.activity = 1; option.valence = 1; option.tension = 1; end end if isnan(option.activity) option.activity = 1; end if isnan(option.valence) option.valence = 1; end if isnan(option.tension) option.tension = 1; end if isnan(option.concepts) option.concepts = 1; end if option.concepts option.happy = 1; option.sad = 1; option.tender = 1; option.anger = 1; option.fear = 1; end if option.happy==1 || option.sad==1 || option.tender==1 ... || option.anger==1 || option.fear==1 if isnan(option.happy) option.happy = 0; end if isnan(option.sad) option.sad = 0; end if isnan(option.tender) option.tender = 0; end if isnan(option.anger) option.anger = 0; end if isnan(option.fear) option.fear = 0; end end %% function e = initialise(rm) e = []; function e = activity(e,rm,fpv,sc,ss,se) % without the box-cox transformation, revised coefficients af = zeros(5,1); af(1) = 0.6664* ((mean(rm) - 0.0559)/0.0337); % af(2) = 0.6099 * ((mean(fpv{1}) - 13270.1836)/10790.655); af(3) = 0.4486*((mean(cell2mat(sc)) - 1677.7)./570.34); af(4) = -0.4639*((mean(cell2mat(ss)) - 250.5574)./205.3147); af(5) = 0.7056*((mean(se) - 0.954)./0.0258); af(isnan(af)) = []; e(end+1,:) = sum(af)+5.4861; e = {e af}; function e = valence(e,rm,fpv,kc,mo,ns) % without the box-cox transformation, revised coefficients vf = zeros(5,1); vf(1) = -0.3161 * ((std(rm) - 0.024254)./0.015667); vf(2) = 0.6099 * ((mean(fpv{1}) - 13270.1836)/10790.655); vf(3) = 0.8802 * ((mean(kc) - 0.5123)./0.091953); vf(4) = 0.4565 * ((mean(mo) - -0.0019958)./0.048664); ns(isnan(ns)) = []; vf(5) = 0.4015 * ((mean(ns) - 131.9503)./47.6463); vf(isnan(vf)) = []; e(end+1,:) = sum(vf)+5.2749; e = {e vf}; function e = tension(e,rm,fpv,kc,hc,nr) tf = zeros(5,1); tf(1) = 0.5382 * ((std(rm) - 0.024254)./0.015667); tf(2) = -0.5406 * ((mean(fpv{1}) - 13270.1836)/10790.655); tf(3) = -0.6808 * ((mean(kc) - 0.5124)./0.092); tf(4) = 0.8629 * ((mean(hc) - 0.2962)./0.0459); tf(5) = -0.5958 * ((mean(nr) - 71.8426)./46.9246); tf(isnan(tf)) = []; e(end+1,:) = sum(tf)+5.4679; e = {e tf}; % BASIC EMOTION PREDICTORS function e = happy(e,fpv,ss,cp,kc,mo) ha_f = zeros(5,1); ha_f(1) = 0.7438*((mean(cell2mat(fpv)) - 13270.1836)./10790.655); ha_f(2) = -0.3965*((mean(cell2mat(ss)) - 250.5574)./205.3147); ha_f(3) = 0.4047*((std(cell2mat(cp)) - 8.5321)./2.5899); ha_f(4) = 0.7780*((mean(kc) - 0.5124)./0.092); ha_f(5) = 0.6220*((mean(mo) - -0.002)./0.0487); ha_f(isnan(ha_f)) = []; e(end+1,:) = sum(ha_f)+2.6166; e = {e ha_f}; function e = sad(e,ss,cp,mo,hc,nt) sa_f = zeros(5,1); sa_f(1) = 0.4324*((mean(cell2mat(ss)) - 250.5574)./205.3147); sa_f(2) = -0.3137*((std(cell2mat(cp)) - 8.5321)./2.5899); sa_f(3) = -0.5201*((mean(mo) - -0.0020)./0.0487); sa_f(4) = -0.6017*((mean(hc) - 0.2962)./0.0459); sa_f(5) = 0.4493*((mean(nt) - 42.2022)./36.7782); sa_f(isnan(sa_f)) = []; e(end+1,:) = sum(sa_f)+2.9756; e = {e sa_f}; function e = tender(e,sc,rg,kc,hc,ns) te_f = zeros(5,1); te_f(1) = -0.2709*((mean(cell2mat(sc)) - 1677.7106)./570.3432); te_f(2) = -0.4904*((std(rg) - 85.9387)./106.0767); te_f(3) = 0.5192*((mean(kc) - 0.5124)./0.0920); te_f(4) = -0.3995*((mean(hc) - 0.2962)./0.0459); te_f(5) = 0.3391*((mean(ns) - 131.9503)./47.6463); te_f(isnan(te_f)) = []; e(end+1,:) = sum(te_f)+2.9756; e = {e te_f}; function e = anger(e,rg,kc,se,nr) % an_f = zeros(5,1); %an_f(1) = -0.2353*((mean(pc) - 0.1462)./.1113); an_f(2) = 0.5517*((mean(rg) - 85.9387)./106.0767); an_f(3) = -.5802*((mean(kc) - 0.5124)./0.092); an_f(4) = .2821*((mean(se) - 0.954)./0.0258); an_f(5) = -.2971*((mean(nr) - 71.8426)./46.9246); an_f(isnan(an_f)) = []; e(end+1,:) = sum(an_f)+1.9767; e = {e an_f}; function e = fear(e,rm,at,fpv,kc,mo) fe_f = zeros(5,1); fe_f(1) = 0.4069*((std(rm) - 0.0243)./0.0157); fe_f(2) = -0.6388*((mean(at) - 0.0707)./0.015689218536423); fe_f(3) = -0.2538*((mean(cell2mat(fpv)) - 13270.1836)./10790.655); fe_f(4) = -0.9860*((mean(kc) - 0.5124)./0.0920); fe_f(5) = -0.3144*((mean(mo) - -0.0019958)./0.048663550639094); fe_f(isnan(fe_f)) = []; e(end+1,:) = sum(fe_f)+2.7847; e = {e fe_f}; function fp = noframe(fp) fp = [fp(1);fp(end)];