Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/WhiteVowel.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [output,aCoeff] = WhiteVowel(data,sr,L,pos) % function [output,aCoeff] = WhiteVowel(data,sr,L,pos) % % Speech is often described as having spectral peaks or formants which % identify the phonetic signal. An interesting experiment, first proposed by % XXX, filters a speech signal to remove all the formant information at one % time during the speech. If there are no formant peaks, how can the speech % be understood? It turns out that processing, much like RASTA, means that % relative changes in spectrum are the most important, thus the speech signal % is understood because the formant transitions carry the information. This % gives speech an important transparency due % % This function takes a speech signal (data) with a given sampling rate (sr). % It then finds the L-order LPC filter that describes the speech at the given % position (pos ms). The entire speech signal is then filtered with the % inverse of the LPC filter, effectively turning the speech spectrum at the % given time white (flat). % Chris Pal, Interval, May 1997 % (c) 1998 Interval Research Corporation fr = 20; fs = 30; preemp = .9378; % LPC defaults [row col] = size(data); if col==1 data=data'; end nframe = 0; msfr = round(sr/1000*fr); msfs = round(sr/1000*fs); duration = length(data); msoverlap = msfs - msfr; frameNumber = floor(pos/1000*sr/msfr); frameStart = round(pos/1000*sr - msfs/2); frameData = data(frameStart:(frameStart+msfs-1)); aCoeff = proclpc(frameData, sr, L, fr, fs, preemp); % Calculate the filter response % by evaluating the z-transform spec=lpc_spec(aCoeff); subplot(2,3,1); plot(spec); title('LPC Spectral Slice'); ylabel('Original') % Now do the actual whitening filter output = filter(aCoeff,1,data)'; frameData = output(frameStart:(frameStart+msfs-1)); bCoeff = proclpc(frameData, sr, L, fr, fs, preemp); spec=lpc_spec(bCoeff); subplot(2,3,4); plot(spec); ylabel('Whitened'); xlabel('FFT Bin'); % 256-DFT origSpec = 20*log10(abs(specgram(data,512,sr,msfs,msoverlap))); subplot(2,3,2),imagesc(origSpec); axis xy; colormap(1-gray); title('Spectrogram'); synSpec = 20*log10(abs(specgram(output,512,sr,msfs,msoverlap))); subplot(2,3,5),imagesc(synSpec); axis xy; colormap(1-gray); xlabel('Frame #'); origloc = origSpec(:,frameNumber); origloc=origloc-max(origloc);origmin=min(origloc); subplot(2,3,3),plot(origloc),title('Spectrogram'), axis([1 length(origloc) origmin 0]); filloc = synSpec(:,frameNumber); filloc=filloc-max(filloc); subplot(2,3,6),plot(filloc);ylabel('db'); axis([1 length(origloc) origmin 0]); xlabel('FFT Bin'); function spec=lpc_spec(aCoeff) gain=0; cft=0:(1/255):1; for index=1:size(aCoeff,1) gain = gain + aCoeff(index)*exp(-i*2*pi*cft).^index; end gain = abs(1./gain); spec = 20*log10(gain(1:128))';