Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/kmeans_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function kmeans_demo() % Generate T points from K=5 1D clusters, and try to recover the cluster % centers using k-means. % Requires BNT, netlab and the matlab stats toolbox v4. K = 5; ndim = 1; true_centers = 1:K; sigma = 1e-6; T = 100; % data(t,:) is the t'th data point data = zeros(T, ndim); % ndx(t) = i means the t'th data point is sample from cluster i %ndx = sample_discrete(normalise(ones(1,K))); ndx = [1*ones(1,20) 2*ones(1,20) 3*ones(1,20) 4*ones(1,20) 5*ones(1,20)]; for t=1:T data(t) = sample_gaussian(true_centers(ndx(t)), sigma, 1); end plot(1:T, data, 'x') % set the centers randomly from Gauss(0) mix = gmm(ndim, K, 'spherical'); h = plot_centers_as_lines(mix, [], T); if 0 % Place initial centers at K data points chosen at random, but add some noise choose_ndx = randperm(T); choose_ndx = choose_ndx(1:K); init_centers = data(choose_ndx) + sample_gaussian(0, 0.1, K); mix.centres = init_centers; h = plot_centers_as_lines(mix, h, T); end if 0 % update centers using netlab k-means options = foptions; niter = 10; options(14) = niter; mix = gmminit(mix, data, options); h = plot_centers_as_lines(mix, h, T); end % use matlab stats toolbox k-means with multiple restarts nrestarts = 5; [idx, centers] = kmeans(data, K, 'replicates', nrestarts, ... 'emptyAction', 'singleton', 'display', 'iter'); mix.centres = centers; h = plot_centers_as_lines(mix, h, T); % fine tune with EM; compute covariances of each cluster options = foptions; niter = 20; options(1) = 1; % display cost fn at each iter options(14) = niter; mix = gmmem(mix, data, options); h = plot_centers_as_lines(mix, h, T); %%%%%%%%% function h = plot_centers_as_lines(mix, h, T) K = mix.ncentres; hold on if isempty(h) for k=1:K h(k)=line([0 T], [mix.centres(k) mix.centres(k)]); end else for k=1:K set(h(k), 'xdata', [0 T], 'ydata', [mix.centres(k) mix.centres(k)]); end end hold off