Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/glmerr_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [e, edata, eprior, y, a] = glmerr_weighted(net, x, t, eso_w) %GLMERR Evaluate error function for generalized linear model. % % Description % E = GLMERR(NET, X, T) takes a generalized linear model data % structure NET together with a matrix X of input vectors and a matrix % T of target vectors, and evaluates the error function E. The choice % of error function corresponds to the output unit activation function. % Each row of X corresponds to one input vector and each row of T % corresponds to one target vector. % % [E, EDATA, EPRIOR, Y, A] = GLMERR(NET, X, T) also returns the data % and prior components of the total error. % % [E, EDATA, EPRIOR, Y, A] = GLMERR(NET, X) also returns a matrix Y % giving the outputs of the models and a matrix A giving the summed % inputs to each output unit, where each row corresponds to one % pattern. % % See also % GLM, GLMPAK, GLMUNPAK, GLMFWD, GLMGRAD, GLMTRAIN % % Copyright (c) Ian T Nabney (1996-9) % Check arguments for consistency errstring = consist(net, 'glm', x, t); if ~isempty(errstring); error(errstring); end [y, a] = glmfwd(net, x); %switch net.actfn switch net.outfn case 'softmax' % Softmax outputs nout = size(a,2); % Ensure that sum(exp(a), 2) does not overflow maxcut = log(realmax) - log(nout); % Ensure that exp(a) > 0 mincut = log(realmin); a = min(a, maxcut); a = max(a, mincut); temp = exp(a); y = temp./(sum(temp, 2)*ones(1,nout)); % Ensure that log(y) is computable y(y<realmin) = realmin; e_app=sum(t.*log(y),2); edata = - eso_w'*e_app; otherwise error(['Unknown activation function ', net.actfn]); end [e, edata, eprior] = errbayes(net, edata);