Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/rbfhess.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h, hdata] = rbfhess(net, x, t, hdata) %RBFHESS Evaluate the Hessian matrix for RBF network. % % Description % H = RBFHESS(NET, X, T) takes an RBF network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. Currently, the % implementation only computes the Hessian for the output layer % weights. % % [H, HDATA] = RBFHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = RBFHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % MLPHESS, HESSCHEK, EVIDENCE % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'rbf', x, t); if ~isempty(errstring); error(errstring); end if nargin == 3 % Data term in Hessian needs to be computed [a, z] = rbffwd(net, x); hdata = datahess(net, z, t); end % Add in effect of regularisation [h, hdata] = hbayes(net, hdata); % Sub-function to compute data part of Hessian function hdata = datahess(net, z, t) % Only works for output layer Hessian currently if (isfield(net, 'mask') & ~any(net.mask(... 1:(net.nwts - net.nout*(net.nhidden+1))))) hdata = zeros(net.nwts); ndata = size(z, 1); out_hess = [z ones(ndata, 1)]'*[z ones(ndata, 1)]; for j = 1:net.nout hdata = rearrange_hess(net, j, out_hess, hdata); end else error('Output layer Hessian only.'); end return % Sub-function to rearrange Hessian matrix function hdata = rearrange_hess(net, j, out_hess, hdata) % Because all the biases come after all the input weights, % we have to rearrange the blocks that make up the network Hessian. % This function assumes that we are on the jth output and that all outputs % are independent. % Start of bias weights block bb_start = net.nwts - net.nout + 1; % Start of weight block for jth output ob_start = net.nwts - net.nout*(net.nhidden+1) + (j-1)*net.nhidden... + 1; % End of weight block for jth output ob_end = ob_start + net.nhidden - 1; % Index of bias weight b_index = bb_start+(j-1); % Put input weight block in right place hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nhidden, ... 1:net.nhidden); % Put second derivative of bias weight in right place hdata(b_index, b_index) = out_hess(net.nhidden+1, net.nhidden+1); % Put cross terms (input weight v bias weight) in right place hdata(b_index, ob_start:ob_end) = out_hess(net.nhidden+1, ... 1:net.nhidden); hdata(ob_start:ob_end, b_index) = out_hess(1:net.nhidden, ... net.nhidden+1); return