Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/ppca.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [var, U, lambda] = ppca(x, ppca_dim) %PPCA Probabilistic Principal Components Analysis % % Description % [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the principal % component subspace U of dimension PPCA_DIM using a centred covariance % matrix X. The variable VAR contains the off-subspace variance (which % is assumed to be spherical), while the vector LAMBDA contains the % variances of each of the principal components. This is computed % using the eigenvalue and eigenvector decomposition of X. % % See also % EIGDEC, PCA % % Copyright (c) Ian T Nabney (1996-2001) if ppca_dim ~= round(ppca_dim) | ppca_dim < 1 | ppca_dim > size(x, 2) error('Number of PCs must be integer, >0, < dim'); end [ndata, data_dim] = size(x); % Assumes that x is centred and responsibility weighted % covariance matrix [l Utemp] = eigdec(x, data_dim); % Zero any negative eigenvalues (caused by rounding) l(l<0) = 0; % Now compute the sigma squared values for all possible values % of q s2_temp = cumsum(l(end:-1:1))./[1:data_dim]'; % If necessary, reduce the value of q so that var is at least % eps * largest eigenvalue q_temp = min([ppca_dim; data_dim-min(find(s2_temp/l(1) > eps))]); if q_temp ~= ppca_dim wstringpart = 'Covariance matrix ill-conditioned: extracted'; wstring = sprintf('%s %d/%d PCs', ... wstringpart, q_temp, ppca_dim); warning(wstring); end if q_temp == 0 % All the latent dimensions have disappeared, so we are % just left with the noise model var = l(1)/data_dim; lambda = var*ones(1, ppca_dim); else var = mean(l(q_temp+1:end)); end U = Utemp(:, 1:q_temp); lambda(1:q_temp) = l(1:q_temp);