Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/mlphint.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h1, h2] = mlphint(net); %MLPHINT Plot Hinton diagram for 2-layer feed-forward network. % % Description % % MLPHINT(NET) takes a network structure NET and plots the Hinton % diagram comprised of two figure windows, one displaying the first- % layer weights and biases, and one displaying the second-layer weights % and biases. % % [H1, H2] = MLPHINT(NET) also returns handles H1 and H2 to the % figures which can be used, for instance, to delete the figures when % they are no longer needed. % % To print the figure correctly, you should call SET(H, % 'INVERTHARDCOPY', 'ON') before printing. % % See also % DEMHINT, HINTMAT, MLP, MLPPAK, MLPUNPAK % % Copyright (c) Ian T Nabney (1996-2001) % Set scale to be up to 0.9 of maximum absolute weight value, where scale % defined so that area of box proportional to weight value. % Use no more than 640x480 pixels xmax = 640; ymax = 480; % Offset bottom left hand corner x01 = 40; y01 = 40; x02 = 80; y02 = 80; % Need to allow 5 pixels border for window frame: but 30 at top border = 5; top_border = 30; ymax = ymax - top_border; xmax = xmax - border; % First layer wb1 = [net.w1; net.b1]; [xvals, yvals, color] = hintmat(wb1'); % Try to preserve aspect ratio approximately if (8*net.nhidden < 6*(net.nin + 1)) delx = xmax; dely = xmax*net.nhidden/(net.nin + 1); else delx = ymax*(net.nin + 1)/net.nhidden; dely = ymax; end h1 = figure('Color', [0.5 0.5 0.5], ... 'Name', 'Hinton diagram: first-layer weights and biases', ... 'NumberTitle', 'off', ... 'Colormap', [0 0 0; 1 1 1], ... 'Units', 'pixels', ... 'Position', [x01 y01 delx dely]); set(gca, 'Visible', 'off', 'Position', [0 0 1 1]); hold on cmap = [0 0 0; 1 1 1]; colors(1, :, :) = cmap(color, :); patch(xvals', yvals', colors, 'Edgecolor', 'none'); axis equal; xpos = net.nin; line([xpos xpos], [0 net.nhidden], 'color', 'red', 'linewidth', 3); % Second layer wb2 = [net.w2; net.b2]; [xvals, yvals, color] = hintmat(wb2'); if (8*net.nout < 6*(net.nhidden + 1)) delx = xmax; dely = xmax*net.nout/(net.nhidden + 1); else delx = ymax*(net.nhidden + 1)/net.nout; dely = ymax; end h2 = figure('Color', [0.5 0.5 0.5], ... 'Name', 'Hinton diagram: second-layer weights and biases', ... 'NumberTitle', 'off', ... 'Colormap', [0 0 0; 1 1 1], ... 'Units', 'pixels', ... 'Position', [x02 y02 delx dely]); set(gca, 'Visible', 'off', 'Position', [0 0 1 1]); hold on colors2(1, :, :) = cmap(color, :); patch(xvals', yvals', colors2, 'Edgecolor', 'none'); axis equal; xpos = net.nhidden; line([xpos xpos], [0 net.nout], 'color', 'red', 'linewidth', 3);