Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/mlpfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [y, z, a] = mlpfwd(net, x) %MLPFWD Forward propagation through 2-layer network. % % Description % Y = MLPFWD(NET, X) takes a network data structure NET together with a % matrix X of input vectors, and forward propagates the inputs through % the network to generate a matrix Y of output vectors. Each row of X % corresponds to one input vector and each row of Y corresponds to one % output vector. % % [Y, Z] = MLPFWD(NET, X) also generates a matrix Z of the hidden unit % activations where each row corresponds to one pattern. % % [Y, Z, A] = MLPFWD(NET, X) also returns a matrix A giving the summed % inputs to each output unit, where each row corresponds to one % pattern. % % See also % MLP, MLPPAK, MLPUNPAK, MLPERR, MLPBKP, MLPGRAD % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'mlp', x); if ~isempty(errstring); error(errstring); end ndata = size(x, 1); z = tanh(x*net.w1 + ones(ndata, 1)*net.b1); a = z*net.w2 + ones(ndata, 1)*net.b2; switch net.outfn case 'linear' % Linear outputs y = a; case 'logistic' % Logistic outputs % Prevent overflow and underflow: use same bounds as mlperr % Ensure that log(1-y) is computable: need exp(a) > eps maxcut = -log(eps); % Ensure that log(y) is computable mincut = -log(1/realmin - 1); a = min(a, maxcut); a = max(a, mincut); y = 1./(1 + exp(-a)); case 'softmax' % Softmax outputs % Prevent overflow and underflow: use same bounds as glmerr % Ensure that sum(exp(a), 2) does not overflow maxcut = log(realmax) - log(net.nout); % Ensure that exp(a) > 0 mincut = log(realmin); a = min(a, maxcut); a = max(a, mincut); temp = exp(a); y = temp./(sum(temp, 2)*ones(1, net.nout)); otherwise error(['Unknown activation function ', net.outfn]); end