Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/mlpderiv.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function g = mlpderiv(net, x) %MLPDERIV Evaluate derivatives of network outputs with respect to weights. % % Description % G = MLPDERIV(NET, X) takes a network data structure NET and a matrix % of input vectors X and returns a three-index matrix G whose I, J, K % element contains the derivative of network output K with respect to % weight or bias parameter J for input pattern I. The ordering of the % weight and bias parameters is defined by MLPUNPAK. % % See also % MLP, MLPPAK, MLPGRAD, MLPBKP % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'mlp', x); if ~isempty(errstring); error(errstring); end [y, z] = mlpfwd(net, x); ndata = size(x, 1); if isfield(net, 'mask') nwts = size(find(net.mask), 1); temp = zeros(1, net.nwts); else nwts = net.nwts; end g = zeros(ndata, nwts, net.nout); for k = 1 : net.nout delta = zeros(1, net.nout); delta(1, k) = 1; for n = 1 : ndata if isfield(net, 'mask') temp = mlpbkp(net, x(n, :), z(n, :), delta); g(n, :, k) = temp(logical(net.mask)); else g(n, :, k) = mlpbkp(net, x(n, :), z(n, :),... delta); end end end