Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/kmeansNetlab.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [centres, options, post, errlog] = kmeans(centres, data, options) %KMEANS Trains a k means cluster model. % % Description % CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means % algorithm to set the centres of a cluster model. The matrix DATA % represents the data which is being clustered, with each row % corresponding to a vector. The sum of squares error function is used. % The point at which a local minimum is achieved is returned as % CENTRES. The error value at that point is returned in OPTIONS(8). % % [CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS) % also returns the cluster number (in a one-of-N encoding) for each % data point in POST and a log of the error values after each cycle in % ERRLOG. The optional parameters have the following % interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then % only warning messages are displayed. If OPTIONS(1) is -1, then % nothing is displayed. % % OPTIONS(2) is a measure of the absolute precision required for the % value of CENTRES at the solution. If the absolute difference between % the values of CENTRES between two successive steps is less than % OPTIONS(2), then this condition is satisfied. % % OPTIONS(3) is a measure of the precision required of the error % function at the solution. If the absolute difference between the % error functions between two successive steps is less than OPTIONS(3), % then this condition is satisfied. Both this and the previous % condition must be satisfied for termination. % % OPTIONS(14) is the maximum number of iterations; default 100. % % See also % GMMINIT, GMMEM % % Copyright (c) Ian T Nabney (1996-2001) [ndata, data_dim] = size(data); [ncentres, dim] = size(centres); if dim ~= data_dim error('Data dimension does not match dimension of centres') end if (ncentres > ndata) error('More centres than data') end % Sort out the options if (options(14)) niters = options(14); else niters = 100; end store = 0; if (nargout > 3) store = 1; errlog = zeros(1, niters); end % Check if centres and posteriors need to be initialised from data if (options(5) == 1) % Do the initialisation perm = randperm(ndata); perm = perm(1:ncentres); % Assign first ncentres (permuted) data points as centres centres = data(perm, :); end % Matrix to make unit vectors easy to construct id = eye(ncentres); % Main loop of algorithm for n = 1:niters % Save old centres to check for termination old_centres = centres; % Calculate posteriors based on existing centres d2 = dist2(data, centres); % Assign each point to nearest centre [minvals, index] = min(d2', [], 1); post = id(index,:); num_points = sum(post, 1); % Adjust the centres based on new posteriors for j = 1:ncentres if (num_points(j) > 0) centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j); end end % Error value is total squared distance from cluster centres e = sum(minvals); if store errlog(n) = e; end if options(1) > 0 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e); end if n > 1 % Test for termination if max(max(abs(centres - old_centres))) < options(2) & ... abs(old_e - e) < options(3) options(8) = e; return; end end old_e = e; end % If we get here, then we haven't terminated in the given number of % iterations. options(8) = e; if (options(1) >= 0) disp(maxitmess); end