Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gtminit.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function net = gtminit(net, options, data, samp_type, varargin) %GTMINIT Initialise the weights and latent sample in a GTM. % % Description % NET = GTMINIT(NET, OPTIONS, DATA, SAMPTYPE) takes a GTM NET and % generates a sample of latent data points and sets the centres (and % widths if appropriate) of NET.RBFNET. % % If the SAMPTYPE is 'REGULAR', then regular grids of latent data % points and RBF centres are created. The dimension of the latent data % space must be 1 or 2. For one-dimensional latent space, the % LSAMPSIZE parameter gives the number of latent points and the % RBFSAMPSIZE parameter gives the number of RBF centres. For a two- % dimensional latent space, these parameters must be vectors of length % 2 with the number of points in each of the x and y directions to % create a rectangular grid. The widths of the RBF basis functions are % set by a call to RBFSETFW passing OPTIONS(7) as the scaling % parameter. % % If the SAMPTYPE is 'UNIFORM' or 'GAUSSIAN' then the latent data is % found by sampling from a uniform or Gaussian distribution % correspondingly. The RBF basis function parameters are set by a call % to RBFSETBF with the DATA parameter as dataset and the OPTIONS % vector. % % Finally, the output layer weights of the RBF are initialised by % mapping the mean of the latent variable to the mean of the target % variable, and the L-dimensional latent variale variance to the % variance of the targets along the first L principal components. % % See also % GTM, GTMEM, PCA, RBFSETBF, RBFSETFW % % Copyright (c) Ian T Nabney (1996-2001) % Check for consistency errstring = consist(net, 'gtm', data); if ~isempty(errstring) error(errstring); end % Check type of sample stypes = {'regular', 'uniform', 'gaussian'}; if (strcmp(samp_type, stypes)) == 0 error('Undefined sample type.') end if net.dim_latent > size(data, 2) error('Latent space dimension must not be greater than data dimension') end nlatent = net.gmmnet.ncentres; nhidden = net.rbfnet.nhidden; % Create latent data sample and set RBF centres switch samp_type case 'regular' if nargin ~= 6 error('Regular type must specify latent and RBF shapes'); end l_samp_size = varargin{1}; rbf_samp_size = varargin{2}; if round(l_samp_size) ~= l_samp_size error('Latent sample specification must contain integers') end % Check existence and size of rbf specification if any(size(rbf_samp_size) ~= [1 net.dim_latent]) | ... prod(rbf_samp_size) ~= nhidden error('Incorrect specification of RBF centres') end % Check dimension and type of latent data specification if any(size(l_samp_size) ~= [1 net.dim_latent]) | ... prod(l_samp_size) ~= nlatent error('Incorrect dimension of latent sample spec.') end if net.dim_latent == 1 net.X = [-1:2/(l_samp_size-1):1]'; net.rbfnet.c = [-1:2/(rbf_samp_size-1):1]'; net.rbfnet = rbfsetfw(net.rbfnet, options(7)); elseif net.dim_latent == 2 net.X = gtm_rctg(l_samp_size); net.rbfnet.c = gtm_rctg(rbf_samp_size); net.rbfnet = rbfsetfw(net.rbfnet, options(7)); else error('For regular sample, input dimension must be 1 or 2.') end case {'uniform', 'gaussian'} if strcmp(samp_type, 'uniform') net.X = 2 * (rand(nlatent, net.dim_latent) - 0.5); else % Sample from N(0, 0.25) distribution to ensure most latent % data is inside square net.X = randn(nlatent, net.dim_latent)/2; end net.rbfnet = rbfsetbf(net.rbfnet, options, net.X); otherwise % Shouldn't get here error('Invalid sample type'); end % Latent data sample and basis function parameters chosen. % Now set output weights [PCcoeff, PCvec] = pca(data); % Scale PCs by eigenvalues A = PCvec(:, 1:net.dim_latent)*diag(sqrt(PCcoeff(1:net.dim_latent))); [temp, Phi] = rbffwd(net.rbfnet, net.X); % Normalise X to ensure 1:1 mapping of variances and calculate weights % as solution of Phi*W = normX*A' normX = (net.X - ones(size(net.X))*diag(mean(net.X)))*diag(1./std(net.X)); net.rbfnet.w2 = Phi \ (normX*A'); % Bias is mean of target data net.rbfnet.b2 = mean(data); % Must also set initial value of variance % Find average distance between nearest centres % Ensure that distance of centre to itself is excluded by setting diagonal % entries to realmax net.gmmnet.centres = rbffwd(net.rbfnet, net.X); d = dist2(net.gmmnet.centres, net.gmmnet.centres) + ... diag(ones(net.gmmnet.ncentres, 1)*realmax); sigma = mean(min(d))/2; % Now set covariance to minimum of this and next largest eigenvalue if net.dim_latent < size(data, 2) sigma = min(sigma, PCcoeff(net.dim_latent+1)); end net.gmmnet.covars = sigma*ones(1, net.gmmnet.ncentres); % Sub-function to create the sample data in 2d function sample = gtm_rctg(samp_size) xDim = samp_size(1); yDim = samp_size(2); % Produce a grid with the right number of rows and columns [X, Y] = meshgrid([0:1:(xDim-1)], [(yDim-1):-1:0]); % Change grid representation sample = [X(:), Y(:)]; % Shift grid to correct position and scale it maxXY= max(sample); sample(:,1) = 2*(sample(:,1) - maxXY(1)/2)./maxXY(1); sample(:,2) = 2*(sample(:,2) - maxXY(2)/2)./maxXY(2); return;