Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/graddesc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ... varargin) %GRADDESC Gradient descent optimization. % % Description % [X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses % batch gradient descent to find a local minimum of the function F(X) % whose gradient is given by GRADF(X). A log of the function values % after each cycle is (optionally) returned in ERRLOG, and a log of the % points visited is (optionally) returned in POINTLOG. % % Note that X is a row vector and F returns a scalar value. The point % at which F has a local minimum is returned as X. The function value % at that point is returned in OPTIONS(8). % % GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional % arguments to be passed to F() and GRADF(). % % The optional parameters have the following interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG, and the points visited in the % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only % warning messages are displayed. If OPTIONS(1) is -1, then nothing is % displayed. % % OPTIONS(2) is the absolute precision required for the value of X at % the solution. If the absolute difference between the values of X % between two successive steps is less than OPTIONS(2), then this % condition is satisfied. % % OPTIONS(3) is a measure of the precision required of the objective % function at the solution. If the absolute difference between the % objective function values between two successive steps is less than % OPTIONS(3), then this condition is satisfied. Both this and the % previous condition must be satisfied for termination. % % OPTIONS(7) determines the line minimisation method used. If it is % set to 1 then a line minimiser is used (in the direction of the % negative gradient). If it is 0 (the default), then each parameter % update is a fixed multiple (the learning rate) of the negative % gradient added to a fixed multiple (the momentum) of the previous % parameter update. % % OPTIONS(9) should be set to 1 to check the user defined gradient % function GRADF with GRADCHEK. This is carried out at the initial % parameter vector X. % % OPTIONS(10) returns the total number of function evaluations % (including those in any line searches). % % OPTIONS(11) returns the total number of gradient evaluations. % % OPTIONS(14) is the maximum number of iterations; default 100. % % OPTIONS(15) is the precision in parameter space of the line search; % default FOPTIONS(2). % % OPTIONS(17) is the momentum; default 0.5. It should be scaled by the % inverse of the number of data points. % % OPTIONS(18) is the learning rate; default 0.01. It should be scaled % by the inverse of the number of data points. % % See also % CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG % % Copyright (c) Ian T Nabney (1996-2001) % Set up the options. if length(options) < 18 error('Options vector too short') end if (options(14)) niters = options(14); else niters = 100; end line_min_flag = 0; % Flag for line minimisation option if (round(options(7)) == 1) % Use line minimisation line_min_flag = 1; % Set options for line minimiser line_options = foptions; if options(15) > 0 line_options(2) = options(15); end else % Learning rate: must be positive if (options(18) > 0) eta = options(18); else eta = 0.01; end % Momentum term: allow zero momentum if (options(17) >= 0) mu = options(17); else mu = 0.5; end end % Check function string f = fcnchk(f, length(varargin)); gradf = fcnchk(gradf, length(varargin)); % Display information if options(1) > 0 display = options(1) > 0; % Work out if we need to compute f at each iteration. % Needed if using line search or if display results or if termination % criterion requires it. fcneval = (options(7) | display | options(3)); % Check gradients if (options(9) > 0) feval('gradchek', x, f, gradf, varargin{:}); end dxold = zeros(1, size(x, 2)); xold = x; fold = 0; % Must be initialised so that termination test can be performed if fcneval fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; fold = fnew; end % Main optimization loop. for j = 1:niters xold = x; grad = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; % Increment gradient evaluation counter if (line_min_flag ~= 1) dx = mu*dxold - eta*grad; x = x + dx; dxold = dx; if fcneval fold = fnew; fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; end else sd = - grad./norm(grad); % New search direction. fold = fnew; % Do a line search: normalise search direction to have length 1 [lmin, line_options] = feval('linemin', f, x, sd, fold, ... line_options, varargin{:}); options(10) = options(10) + line_options(10); x = xold + lmin*sd; fnew = line_options(8); end if nargout >= 3 flog(j) = fnew; if nargout >= 4 pointlog(j, :) = x; end end if display fprintf(1, 'Cycle %5d Function %11.8f\n', j, fnew); end if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3)) % Termination criteria are met options(8) = fnew; return; end end if fcneval options(8) = fnew; else options(8) = feval(f, x, varargin{:}); options(10) = options(10) + 1; end if (options(1) >= 0) disp(maxitmess); end