Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/gpgrad.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function g = gpgrad(net, x, t) %GPGRAD Evaluate error gradient for Gaussian Process. % % Description % G = GPGRAD(NET, X, T) takes a Gaussian Process data structure NET % together with a matrix X of input vectors and a matrix T of target % vectors, and evaluates the error gradient G. Each row of X % corresponds to one input vector and each row of T corresponds to one % target vector. % % See also % GP, GPCOVAR, GPFWD, GPERR % % Copyright (c) Ian T Nabney (1996-2001) errstring = consist(net, 'gp', x, t); if ~isempty(errstring); error(errstring); end % Evaluate derivatives with respect to each hyperparameter in turn. ndata = size(x, 1); [cov, covf] = gpcovar(net, x); cninv = inv(cov); trcninv = trace(cninv); cninvt = cninv*t; % Function parameters switch net.covar_fn case 'sqexp' % Squared exponential gfpar = trace(cninv*covf) - cninvt'*covf*cninvt; case 'ratquad' % Rational quadratic beta = diag(exp(net.inweights)); gfpar(1) = trace(cninv*covf) - cninvt'*covf*cninvt; D2 = (x.*x)*beta*ones(net.nin, ndata) - 2*x*beta*x' ... + ones(ndata, net.nin)*beta*(x.*x)'; E = ones(size(D2)); L = - exp(net.fpar(2)) * covf .* log(E + D2); % d(cn)/d(nu) gfpar(2) = trace(cninv*L) - cninvt'*L*cninvt; otherwise error(['Unknown covariance function ', net.covar_fn]); end % Bias derivative ndata = size(x, 1); fac = exp(net.bias)*ones(ndata); gbias = trace(cninv*fac) - cninvt'*fac*cninvt; % Noise derivative gnoise = exp(net.noise)*(trcninv - cninvt'*cninvt); % Input weight derivatives if strcmp(net.covar_fn, 'ratquad') F = (exp(net.fpar(2))*E)./(E + D2); end nparams = length(net.inweights); for l = 1 : nparams vect = x(:, l); matx = (vect.*vect)*ones(1, ndata) ... - 2.0*vect*vect' ... + ones(ndata, 1)*(vect.*vect)'; switch net.covar_fn case 'sqexp' % Squared exponential dmat = -0.5*exp(net.inweights(l))*covf.*matx; case 'ratquad' % Rational quadratic dmat = - exp(net.inweights(l))*covf.*matx.*F; otherwise error(['Unknown covariance function ', net.covar_fn]); end gw1(l) = trace(cninv*dmat) - cninvt'*dmat*cninvt; end g1 = [gbias, gnoise, gw1, gfpar]; g1 = 0.5*g1; % Evaluate the prior contribution to the gradient. if isfield(net, 'pr_mean') w = gppak(net); m = repmat(net.pr_mean, size(w)); if size(net.pr_mean) == [1 1] gprior = w - m; g2 = gprior/net.pr_var; else ngroups = size(net.pr_mean, 1); gprior = net.index'.*(ones(ngroups, 1)*w - m); g2 = (1./net.pr_var)'*gprior; end else gprior = 0; g2 = 0; end g = g1 + g2;