Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/glmhess.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h, hdata] = glmhess(net, x, t, hdata) %GLMHESS Evaluate the Hessian matrix for a generalised linear model. % % Description % H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. Note that the target data % is not required in the calculation, but is included to make the % interface uniform with NETHESS. For linear and logistic outputs, the % computation is very simple and is done (in effect) in one line in % GLMTRAIN. % % [H, HDATA] = GLMHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = GLMHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % GLM, GLMTRAIN, HESSCHEK, NETHESS % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'glm', x, t); if ~isempty(errstring); error(errstring); end ndata = size(x, 1); nparams = net.nwts; nout = net.nout; p = glmfwd(net, x); inputs = [x ones(ndata, 1)]; if nargin == 3 hdata = zeros(nparams); % Full Hessian matrix % Calculate data component of Hessian switch net.outfn case 'linear' % No weighting function here out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)]; for j = 1:nout hdata = rearrange_hess(net, j, out_hess, hdata); end case 'logistic' % Each output is independent e = ones(1, net.nin+1); link_deriv = p.*(1-p); out_hess = zeros(net.nin+1); for j = 1:nout inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e); out_hess = inputs'*inputs; % Hessian for this output hdata = rearrange_hess(net, j, out_hess, hdata); end case 'softmax' bb_start = nparams - nout + 1; % Start of bias weights block ex_hess = zeros(nparams); % Contribution to Hessian from single example for m = 1:ndata X = x(m,:)'*x(m,:); a = diag(p(m,:))-((p(m,:)')*p(m,:)); ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X); ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout); temp = kron(a, x(m,:)); ex_hess(bb_start:nparams, 1:nparams-nout) = temp; ex_hess(1:nparams-nout, bb_start:nparams) = temp'; hdata = hdata + ex_hess; end otherwise error(['Unknown activation function ', net.outfn]); end end [h, hdata] = hbayes(net, hdata); function hdata = rearrange_hess(net, j, out_hess, hdata) % Because all the biases come after all the input weights, % we have to rearrange the blocks that make up the network Hessian. % This function assumes that we are on the jth output and that all outputs % are independent. bb_start = net.nwts - net.nout + 1; % Start of bias weights block ob_start = 1+(j-1)*net.nin; % Start of weight block for jth output ob_end = j*net.nin; % End of weight block for jth output b_index = bb_start+(j-1); % Index of bias weight % Put input weight block in right place hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin); % Put second derivative of bias weight in right place hdata(b_index, b_index) = out_hess(net.nin+1, net.nin+1); % Put cross terms (input weight v bias weight) in right place hdata(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin); hdata(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1); return