Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demknn1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMKNN1 Demonstrate nearest neighbour classifier. % % Description % The problem consists of data in a two-dimensional space. The data is % drawn from three spherical Gaussian distributions with priors 0.3, % 0.5 and 0.2; centres (2, 3.5), (0, 0) and (0,2); and standard % deviations 0.2, 0.5 and 1.0. The first figure contains a scatter plot % of the data. The data is the same as in DEMGMM1. % % The second figure shows the data labelled with the corresponding % class given by the classifier. % % See also % DEM2DDAT, DEMGMM1, KNN % % Copyright (c) Ian T Nabney (1996-2001) clc disp('This program demonstrates the use of the K nearest neighbour algorithm.') disp(' ') disp('Press any key to continue.') pause % Generate the test data ndata = 250; randn('state', 42); rand('state', 42); [data, c] = dem2ddat(ndata); % Randomise data order data = data(randperm(ndata),:); clc disp('We generate the data in two-dimensional space from a mixture of') disp('three spherical Gaussians. The centres are shown as black crosses') disp('in the plot.') disp(' ') disp('Press any key to continue.') pause fh1 = figure; plot(data(:, 1), data(:, 2), 'o') set(gca, 'Box', 'on') hold on title('Data') hp1 = plot(c(:, 1), c(:,2), 'k+') % Increase size of crosses set(hp1, 'MarkerSize', 8); set(hp1, 'LineWidth', 2); hold off clc disp('We next use the centres as training examplars for the K nearest') disp('neighbour algorithm.') disp(' ') disp('Press any key to continue.') pause % Use centres as training data train_labels = [1, 0, 0; 0, 1, 0; 0, 0, 1]; % Label the test data up to kmax neighbours kmax = 1; net = knn(2, 3, kmax, c, train_labels); [y, l] = knnfwd(net, data); clc disp('We now plot each data point coloured according to its classification.') disp(' ') disp('Press any key to continue.') pause % Plot the result fh2 = figure; colors = ['b.'; 'r.'; 'g.']; for i = 1:3 thisX = data(l == i,1); thisY = data(l == i,2); hp(i) = plot(thisX, thisY, colors(i,:)); set(hp(i), 'MarkerSize', 12); if i == 1 hold on end end set(gca, 'Box', 'on'); legend('Class 1', 'Class 2', 'Class 3', 2) hold on labels = ['1', '2', '3']; hp2 = plot(c(:, 1), c(:,2), 'k+'); % Increase size of crosses set(hp2, 'MarkerSize', 8); set(hp2, 'LineWidth', 2); test_labels = labels(l(:,1)); title('Training data and data labels') hold off disp('The demonstration is now complete: press any key to exit.') pause close(fh1); close(fh2); clear all;