Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demgmm4.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMGMM4 Demonstrate density modelling with a Gaussian mixture model. % % Description % The problem consists of modelling data generated by a mixture of % three Gaussians in 2 dimensions with a mixture model using full % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres % are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis % aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The % first figure contains a scatter plot of the data. % % A Gaussian mixture model with three components is trained using EM. % The parameter vector is printed before training and after training. % The user should press any key to continue at these points. The % parameter vector consists of priors (the column), and centres (given % as (x, y) pairs as the next two columns). The covariance matrices % are printed separately. % % The second figure is a 3 dimensional view of the density function, % while the third shows the axes of the 1-standard deviation ellipses % for the three components of the mixture model. % % See also % GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK % % Copyright (c) Ian T Nabney (1996-2001) % Generate the data ndata = 500; % Fix the seeds for reproducible results randn('state', 42); rand('state', 42); data = randn(ndata, 2); prior = [0.3 0.5 0.2]; % Mixture model swaps clusters 1 and 3 datap = [0.2 0.5 0.3]; datac = [0 2; 0 0; 2 3.5]; datacov = repmat(eye(2), [1 1 3]); data1 = data(1:prior(1)*ndata,:); data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); % First cluster has axis aligned variance and centre (2, 3.5) data1(:, 1) = data1(:, 1)*0.4 + 2.0; data1(:, 2) = data1(:, 2)*0.8 + 3.5; datacov(:, :, 3) = [0.4*0.4 0; 0 0.8*0.8]; % Second cluster has variance axes rotated by 30 degrees and centre (0, 0) rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; data2(:,1) = data2(:, 1)*0.5; data2 = data2*rotn; datacov(:, :, 2) = rotn' * [0.25 0; 0 1] * rotn; % Third cluster is at (0,2) data3 = data3 + repmat([0 2], prior(3)*ndata, 1); % Put the dataset together again data = [data1; data2; data3]; clc disp('This demonstration illustrates the use of a Gaussian mixture model') disp('with full covariance matrices to approximate the unconditional ') disp('probability density of data in a two-dimensional space.') disp('We begin by generating the data from a mixture of three Gaussians and') disp('plotting it.') disp(' ') disp('The first cluster has axis aligned variance and centre (0, 2).') disp('The second cluster has variance axes rotated by 30 degrees') disp('and centre (0, 0). The third cluster has unit variance and centre') disp('(2, 3.5).') disp(' ') disp('Press any key to continue.') pause fh1 = figure; plot(data(:, 1), data(:, 2), 'o') set(gca, 'Box', 'on') % Set up mixture model ncentres = 3; input_dim = 2; mix = gmm(input_dim, ncentres, 'full'); % Initialise the model parameters from the data options = foptions; options(14) = 5; % Just use 5 iterations of k-means in initialisation mix = gmminit(mix, data, options); % Print out model clc disp('The mixture model has three components and full covariance') disp('matrices. The model parameters after initialisation using the') disp('k-means algorithm are as follows') disp(' Priors Centres') disp([mix.priors' mix.centres]) disp('Covariance matrices are') disp(mix.covars) disp('Press any key to continue.') pause % Set up vector of options for EM trainer options = zeros(1, 18); options(1) = 1; % Prints out error values. options(14) = 50; % Number of iterations. disp('We now train the model using the EM algorithm for 50 iterations.') disp(' ') disp('Press any key to continue.') pause [mix, options, errlog] = gmmem(mix, data, options); % Print out model disp(' ') disp('The trained model has priors and centres:') disp(' Priors Centres') disp([mix.priors' mix.centres]) disp('The data generator has priors and centres') disp(' Priors Centres') disp([datap' datac]) disp('Model covariance matrices are') disp(mix.covars(:, :, 1)) disp(mix.covars(:, :, 2)) disp(mix.covars(:, :, 3)) disp('Data generator covariance matrices are') disp(datacov(:, :, 1)) disp(datacov(:, :, 2)) disp(datacov(:, :, 3)) disp('Note the close correspondence between these parameters and those') disp('of the distribution used to generate the data. The match for') disp('covariance matrices is not that close, but would be improved with') disp('more iterations of the training algorithm.') disp(' ') disp('Press any key to continue.') pause clc disp('We now plot the density given by the mixture model as a surface plot.') disp(' ') disp('Press any key to continue.') pause % Plot the result x = -4.0:0.2:5.0; y = -4.0:0.2:5.0; [X, Y] = meshgrid(x,y); X = X(:); Y = Y(:); grid = [X Y]; Z = gmmprob(mix, grid); Z = reshape(Z, length(x), length(y)); c = mesh(x, y, Z); hold on title('Surface plot of probability density') hold off drawnow clc disp('The final plot shows the centres and widths, given by one standard') disp('deviation, of the three components of the mixture model. The axes') disp('of the ellipses of constant density are shown.') disp(' ') disp('Press any key to continue.') pause % Try to calculate a sensible position for the second figure, below the first fig1_pos = get(fh1, 'Position'); fig2_pos = fig1_pos; fig2_pos(2) = fig2_pos(2) - fig1_pos(4) - 30; fh2 = figure('Position', fig2_pos); h3 = plot(data(:, 1), data(:, 2), 'bo'); axis equal; hold on title('Plot of data and covariances') for i = 1:ncentres [v,d] = eig(mix.covars(:,:,i)); for j = 1:2 % Ensure that eigenvector has unit length v(:,j) = v(:,j)/norm(v(:,j)); start=mix.centres(i,:)-sqrt(d(j,j))*(v(:,j)'); endpt=mix.centres(i,:)+sqrt(d(j,j))*(v(:,j)'); linex = [start(1) endpt(1)]; liney = [start(2) endpt(2)]; line(linex, liney, 'Color', 'k', 'LineWidth', 3) end % Plot ellipses of one standard deviation theta = 0:0.02:2*pi; x = sqrt(d(1,1))*cos(theta); y = sqrt(d(2,2))*sin(theta); % Rotate ellipse axes ellipse = (v*([x; y]))'; % Adjust centre ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); plot(ellipse(:,1), ellipse(:,2), 'r-'); end hold off disp('Note how the data cluster positions and widths are captured by') disp('the mixture model.') disp(' ') disp('Press any key to end.') pause close(fh1); close(fh2); clear all;