Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/scg.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual scg </title> </head> <body> <H1> scg </H1> <h2> Purpose </h2> Scaled conjugate gradient optimization. <p><h2> Description </h2> <CODE>[x, options] = scg(f, x, options, gradf)</CODE> uses a scaled conjugate gradients algorithm to find a local minimum of the function <CODE>f(x)</CODE> whose gradient is given by <CODE>gradf(x)</CODE>. Here <CODE>x</CODE> is a row vector and <CODE>f</CODE> returns a scalar value. The point at which <CODE>f</CODE> has a local minimum is returned as <CODE>x</CODE>. The function value at that point is returned in <CODE>options(8)</CODE>. <p><CODE>[x, options, flog, pointlog, scalelog] = scg(f, x, options, gradf)</CODE> also returns (optionally) a log of the function values after each cycle in <CODE>flog</CODE>, a log of the points visited in <CODE>pointlog</CODE>, and a log of the scale values in the algorithm in <CODE>scalelog</CODE>. <p><CODE>scg(f, x, options, gradf, p1, p2, ...)</CODE> allows additional arguments to be passed to <CODE>f()</CODE> and <CODE>gradf()</CODE>. The optional parameters have the following interpretations. <p><CODE>options(1)</CODE> is set to 1 to display error values; also logs error values in the return argument <CODE>errlog</CODE>, and the points visited in the return argument <CODE>pointslog</CODE>. If <CODE>options(1)</CODE> is set to 0, then only warning messages are displayed. If <CODE>options(1)</CODE> is -1, then nothing is displayed. <p><CODE>options(2)</CODE> is a measure of the absolute precision required for the value of <CODE>x</CODE> at the solution. If the absolute difference between the values of <CODE>x</CODE> between two successive steps is less than <CODE>options(2)</CODE>, then this condition is satisfied. <p><CODE>options(3)</CODE> is a measure of the precision required of the objective function at the solution. If the absolute difference between the objective function values between two successive steps is less than <CODE>options(3)</CODE>, then this condition is satisfied. Both this and the previous condition must be satisfied for termination. <p><CODE>options(9)</CODE> is set to 1 to check the user defined gradient function. <p><CODE>options(10)</CODE> returns the total number of function evaluations (including those in any line searches). <p><CODE>options(11)</CODE> returns the total number of gradient evaluations. <p><CODE>options(14)</CODE> is the maximum number of iterations; default 100. <p><h2> Examples </h2> An example of the use of the additional arguments is the minimization of an error function for a neural network: <PRE> w = scg('neterr', w, options, 'netgrad', net, x, t); </PRE> <p><h2> Algorithm </h2> The search direction is re-started after every <CODE>nparams</CODE> successful weight updates where <CODE>nparams</CODE> is the total number of parameters in <CODE>x</CODE>. The algorithm is based on that given by Williams (1991), with a simplified procedure for updating <CODE>lambda</CODE> when <CODE>rho < 0.25</CODE>. <p><h2> See Also </h2> <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="quasinew.htm">quasinew</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>