view toolboxes/FullBNT-1.0.7/nethelp3.3/rbfgrad.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line source
<html>
<head>
<title>
Netlab Reference Manual rbfgrad
</title>
</head>
<body>
<H1> rbfgrad
</H1>
<h2>
Purpose
</h2>
Evaluate gradient of error function for RBF network.

<p><h2>
Synopsis
</h2>
<PRE>

g = rbfgrad(net, x, t)
[g, gdata, gprior] = rbfgrad(net, x, t)
</PRE>


<p><h2>
Description
</h2>
<CODE>g = rbfgrad(net, x, t)</CODE> takes a network data structure <CODE>net</CODE>
together with a matrix <CODE>x</CODE> of input
vectors and a matrix <CODE>t</CODE> of target vectors, and evaluates the gradient
<CODE>g</CODE> of the error function with respect to the network weights (i.e.
including the hidden unit parameters). The error
function is sum of squares.
Each row of <CODE>x</CODE> corresponds to one
input vector and each row of <CODE>t</CODE> contains the corresponding target vector.
If the output function is <CODE>'neuroscale'</CODE> then the gradient is only
computed for the output layer weights and biases.

<p><CODE>[g, gdata, gprior] = rbfgrad(net, x, t)</CODE> also returns separately 
the data and prior contributions to the gradient. In the case of
multiple groups in the prior, <CODE>gprior</CODE> is a matrix with a row
for each group and a column for each weight parameter.

<p><h2>
See Also
</h2>
<CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="rbffwd.htm">rbffwd</a></CODE>, <CODE><a href="rbferr.htm">rbferr</a></CODE>, <CODE><a href="rbfpak.htm">rbfpak</a></CODE>, <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE>, <CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><hr>
<b>Pages:</b>
<a href="index.htm">Index</a>
<hr>
<p>Copyright (c) Ian T Nabney (1996-9)


</body>
</html>