Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/mlp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual mlp </title> </head> <body> <H1> mlp </H1> <h2> Purpose </h2> Create a 2-layer feedforward network. <p><h2> Synopsis </h2> <PRE> net = mlp(nin, nhidden, nout, func) net = mlp(nin, nhidden, nout, func, prior) net = mlp(nin, nhidden, nout, func, prior, beta) </PRE> <p><h2> Description </h2> <CODE>net = mlp(nin, nhidden, nout, func)</CODE> takes the number of inputs, hidden units and output units for a 2-layer feed-forward network, together with a string <CODE>func</CODE> which specifies the output unit activation function, and returns a data structure <CODE>net</CODE>. The weights are drawn from a zero mean, unit variance isotropic Gaussian, with varianced scaled by the fan-in of the hidden or output units as appropriate. This makes use of the Matlab function <CODE>randn</CODE> and so the seed for the random weight initialization can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. The hidden units use the <CODE>tanh</CODE> activation function. <p>The fields in <CODE>net</CODE> are <PRE> type = 'mlp' nin = number of inputs nhidden = number of hidden units nout = number of outputs nwts = total number of weights and biases actfn = string describing the output unit activation function: 'linear' 'logistic 'softmax' w1 = first-layer weight matrix b1 = first-layer bias vector w2 = second-layer weight matrix b2 = second-layer bias vector </PRE> Here <CODE>w1</CODE> has dimensions <CODE>nin</CODE> times <CODE>nhidden</CODE>, <CODE>b1</CODE> has dimensions <CODE>1</CODE> times <CODE>nhidden</CODE>, <CODE>w2</CODE> has dimensions <CODE>nhidden</CODE> times <CODE>nout</CODE>, and <CODE>b2</CODE> has dimensions <CODE>1</CODE> times <CODE>nout</CODE>. <p><CODE>net = mlp(nin, nhidden, nout, func, prior)</CODE>, in which <CODE>prior</CODE> is a scalar, allows the field <CODE>net.alpha</CODE> in the data structure <CODE>net</CODE> to be set, corresponding to a zero-mean isotropic Gaussian prior with inverse variance with value <CODE>prior</CODE>. Alternatively, <CODE>prior</CODE> can consist of a data structure with fields <CODE>alpha</CODE> and <CODE>index</CODE>, allowing individual Gaussian priors to be set over groups of weights in the network. Here <CODE>alpha</CODE> is a column vector in which each element corresponds to a separate group of weights, which need not be mutually exclusive. The membership of the groups is defined by the matrix <CODE>indx</CODE> in which the columns correspond to the elements of <CODE>alpha</CODE>. Each column has one element for each weight in the matrix, in the order defined by the function <CODE>mlppak</CODE>, and each element is 1 or 0 according to whether the weight is a member of the corresponding group or not. A utility function <CODE>mlpprior</CODE> is provided to help in setting up the <CODE>prior</CODE> data structure. <p><CODE>net = mlp(nin, nhidden, nout, func, prior, beta)</CODE> also sets the additional field <CODE>net.beta</CODE> in the data structure <CODE>net</CODE>, where beta corresponds to the inverse noise variance. <p><h2> See Also </h2> <CODE><a href="mlpprior.htm">mlpprior</a></CODE>, <CODE><a href="mlppak.htm">mlppak</a></CODE>, <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE>, <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>