Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/mdn.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual mdn </title> </head> <body> <H1> mdn </H1> <h2> Purpose </h2> Creates a Mixture Density Network with specified architecture. <p><h2> Synopsis </h2> <PRE> net = mdn(nin, nhidden, ncentres, dimtarget) net = mdn(nin, nhidden, ncentres, dimtarget, mixtype, ... prior, beta) </PRE> <p><h2> Description </h2> <CODE>net = mdn(nin, nhidden, ncentres, dimtarget)</CODE> takes the number of inputs, hidden units for a 2-layer feed-forward network and the number of centres and target dimension for the mixture model whose parameters are set from the outputs of the neural network. The fifth argument <CODE>mixtype</CODE> is used to define the type of mixture model. (Currently there is only one type supported: a mixture of Gaussians with a single covariance parameter for each component.) For this model, the mixture coefficients are computed from a group of softmax outputs, the centres are equal to a group of linear outputs, and the variances are obtained by applying the exponential function to a third group of outputs. <p>The network is initialised by a call to <CODE>mlp</CODE>, and the arguments <CODE>prior</CODE>, and <CODE>beta</CODE> have the same role as for that function. Weight initialisation uses the Matlab function <CODE>randn</CODE> and so the seed for the random weight initialization can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. A specialised data structure (rather than <CODE>gmm</CODE>) is used for the mixture model outputs to improve the efficiency of error and gradient calculations in network training. The fields are described in <CODE>mdnfwd</CODE> where they are set up. <p>The fields in <CODE>net</CODE> are <PRE> type = 'mdn' nin = number of input variables nout = dimension of target space (not number of network outputs) nwts = total number of weights and biases mdnmixes = data structure for mixture model output mlp = data structure for MLP network </PRE> <p><h2> Example </h2> <PRE> net = mdn(2, 4, 3, 1, 'spherical'); </PRE> This creates a Mixture Density Network with 2 inputs and 4 hidden units. The mixture model has 3 components and the target space has dimension 1. <p><h2> See Also </h2> <CODE><a href="mdnfwd.htm">mdnfwd</a></CODE>, <CODE><a href="mdnerr.htm">mdnerr</a></CODE>, <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE>, <CODE><a href="mdngrad.htm">mdngrad</a></CODE>, <CODE><a href="mdnpak.htm">mdnpak</a></CODE>, <CODE><a href="mdnunpak.htm">mdnunpak</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) <p>David J Evans (1998) </body> </html>