Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/hmc.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual hmc </title> </head> <body> <H1> hmc </H1> <h2> Purpose </h2> Hybrid Monte Carlo sampling. <p><h2> Synopsis </h2> <PRE> samples = hmc(f, x, options, gradf) samples = hmc(f, x, options, gradf, P1, P2, ...) [samples, energies, diagn] = hmc(f, x, options, gradf) s = hmc('state') hmc('state', s) </PRE> <p><h2> Description </h2> <CODE>samples = hmc(f, x, options, gradf)</CODE> uses a hybrid Monte Carlo algorithm to sample from the distribution <CODE>p ~ exp(-f)</CODE>, where <CODE>f</CODE> is the first argument to <CODE>hmc</CODE>. The Markov chain starts at the point <CODE>x</CODE>, and the function <CODE>gradf</CODE> is the gradient of the `energy' function <CODE>f</CODE>. <p><CODE>hmc(f, x, options, gradf, p1, p2, ...)</CODE> allows additional arguments to be passed to <CODE>f()</CODE> and <CODE>gradf()</CODE>. <p><CODE>[samples, energies, diagn] = hmc(f, x, options, gradf)</CODE> also returns a log of the energy values (i.e. negative log probabilities) for the samples in <CODE>energies</CODE> and <CODE>diagn</CODE>, a structure containing diagnostic information (position, momentum and acceptance threshold) for each step of the chain in <CODE>diagn.pos</CODE>, <CODE>diagn.mom</CODE> and <CODE>diagn.acc</CODE> respectively. All candidate states (including rejected ones) are stored in <CODE>diagn.pos</CODE>. <p><CODE>[samples, energies, diagn] = hmc(f, x, options, gradf)</CODE> also returns the <CODE>energies</CODE> (i.e. negative log probabilities) corresponding to the samples. The <CODE>diagn</CODE> structure contains three fields: <p><CODE>pos</CODE> the position vectors of the dynamic process. <p><CODE>mom</CODE> the momentum vectors of the dynamic process. <p><CODE>acc</CODE> the acceptance thresholds. <p><CODE>s = hmc('state')</CODE> returns a state structure that contains the state of the two random number generators <CODE>rand</CODE> and <CODE>randn</CODE> and the momentum of the dynamic process. These are contained in fields <CODE>randstate</CODE>, <CODE>randnstate</CODE> and <CODE>mom</CODE> respectively. The momentum state is only used for a persistent momentum update. <p><CODE>hmc('state', s)</CODE> resets the state to <CODE>s</CODE>. If <CODE>s</CODE> is an integer, then it is passed to <CODE>rand</CODE> and <CODE>randn</CODE> and the momentum variable is randomised. If <CODE>s</CODE> is a structure returned by <CODE>hmc('state')</CODE> then it resets the generator to exactly the same state. <p>The optional parameters in the <CODE>options</CODE> vector have the following interpretations. <p><CODE>options(1)</CODE> is set to 1 to display the energy values and rejection threshold at each step of the Markov chain. If the value is 2, then the position vectors at each step are also displayed. <p><CODE>options(5)</CODE> is set to 1 if momentum persistence is used; default 0, for complete replacement of momentum variables. <p><CODE>options(7)</CODE> defines the trajectory length (i.e. the number of leap-frog steps at each iteration). Minimum value 1. <p><CODE>options(9)</CODE> is set to 1 to check the user defined gradient function. <p><CODE>options(14)</CODE> is the number of samples retained from the Markov chain; default 100. <p><CODE>options(15)</CODE> is the number of samples omitted from the start of the chain; default 0. <p><CODE>options(17)</CODE> defines the momentum used when a persistent update of (leap-frog) momentum is used. This is bounded to the interval [0, 1). <p><CODE>options(18)</CODE> is the step size used in leap-frogs; default 1/trajectory length. <p><h2> Examples </h2> The following code fragment samples from the posterior distribution of weights for a neural network. <PRE> w = mlppak(net); [samples, energies] = hmc('neterr', w, options, 'netgrad', net, x, t); </PRE> <p><h2> Algorithm </h2> The algroithm follows the procedure outlined in Radford Neal's technical report CRG-TR-93-1 from the University of Toronto. The stochastic update of momenta samples from a zero mean unit covariance gaussian. <p><h2> See Also </h2> <CODE><a href="metrop.htm">metrop</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>