Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/gmm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual gmm </title> </head> <body> <H1> gmm </H1> <h2> Purpose </h2> Creates a Gaussian mixture model with specified architecture. <p><h2> Synopsis </h2> <PRE> mix = gmm(dim, ncentres, covartype) mix = gmm(dim, ncentres, covartype, ppca_dim) </PRE> <p><h2> Description </h2> <CODE>mix = gmm(dim, ncentres, covartype)</CODE> takes the dimension of the space <CODE>dim</CODE>, the number of centres in the mixture model and the type of the mixture model, and returns a data structure <CODE>mix</CODE>. The mixture model type defines the covariance structure of each component Gaussian: <PRE> 'spherical' = single variance parameter for each component: stored as a vector 'diag' = diagonal matrix for each component: stored as rows of a matrix 'full' = full matrix for each component: stored as 3d array 'ppca' = probabilistic PCA: stored as principal components (in a 3d array and associated variances and off-subspace noise </PRE> <CODE>mix = gmm(dim, ncentres, covartype, ppca_dim)</CODE> also sets the dimension of the PPCA sub-spaces: the default value is one. <p>The priors are initialised to equal values summing to one, and the covariances are all the identity matrix (or equivalent). The centres are initialised randomly from a zero mean unit variance Gaussian. This makes use of the MATLAB function <CODE>randn</CODE> and so the seed for the random weight initialisation can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the state value. <p>The fields in <CODE>mix</CODE> are <PRE> type = 'gmm' nin = the dimension of the space ncentres = number of mixture components covartype = string for type of variance model priors = mixing coefficients centres = means of Gaussians: stored as rows of a matrix covars = covariances of Gaussians </PRE> The additional fields for mixtures of PPCA are <PRE> U = principal component subspaces lambda = in-space covariances: stored as rows of a matrix </PRE> The off-subspace noise is stored in <CODE>covars</CODE>. <p><h2> Example </h2> <PRE> mix = gmm(2, 4, 'spherical'); </PRE> This creates a Gaussian mixture model with 4 components in 2 dimensions. The covariance structure is a spherical model. <p><h2> See Also </h2> <CODE><a href="gmmpak.htm">gmmpak</a></CODE>, <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE>, <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE>, <CODE><a href="gmmem.htm">gmmem</a></CODE>, <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE>, <CODE><a href="gmmpost.htm">gmmpost</a></CODE>, <CODE><a href="gmmprob.htm">gmmprob</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>