Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/glm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual glm </title> </head> <body> <H1> glm </H1> <h2> Purpose </h2> Create a generalized linear model. <p><h2> Synopsis </h2> <PRE> net = glm(nin, nout, func) net = glm(nin, nout, func, prior) net = glm(nin, nout, func, prior, beta) </PRE> <p><h2> Description </h2> <p><CODE>net = glm(nin, nout, func)</CODE> takes the number of inputs and outputs for a generalized linear model, together with a string <CODE>func</CODE> which specifies the output unit activation function, and returns a data structure <CODE>net</CODE>. The weights are drawn from a zero mean, isotropic Gaussian, with variance scaled by the fan-in of the output units. This makes use of the Matlab function <CODE>randn</CODE> and so the seed for the random weight initialization can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. The optional argument <CODE>alpha</CODE> sets the inverse variance for the weight initialization. <p>The fields in <CODE>net</CODE> are <PRE> type = 'glm' nin = number of inputs nout = number of outputs nwts = total number of weights and biases actfn = string describing the output unit activation function: 'linear' 'logistic' 'softmax' w1 = first-layer weight matrix b1 = first-layer bias vector </PRE> <p><CODE>net = glm(nin, nout, func, prior)</CODE>, in which <CODE>prior</CODE> is a scalar, allows the field <CODE>net.alpha</CODE> in the data structure <CODE>net</CODE> to be set, corresponding to a zero-mean isotropic Gaussian prior with inverse variance with value <CODE>prior</CODE>. Alternatively, <CODE>prior</CODE> can consist of a data structure with fields <CODE>alpha</CODE> and <CODE>index</CODE>, allowing individual Gaussian priors to be set over groups of weights in the network. Here <CODE>alpha</CODE> is a column vector in which each element corresponds to a separate group of weights, which need not be mutually exclusive. The membership of the groups is defined by the matrix <CODE>index</CODE> in which the columns correspond to the elements of <CODE>alpha</CODE>. Each column has one element for each weight in the matrix, in the order defined by the function <CODE>glmpak</CODE>, and each element is 1 or 0 according to whether the weight is a member of the corresponding group or not. <p><CODE>net = glm(nin, nout, func, prior, beta)</CODE> also sets the additional field <CODE>net.beta</CODE> in the data structure <CODE>net</CODE>, where beta corresponds to the inverse noise variance. <p><h2> See Also </h2> <CODE><a href="glmpak.htm">glmpak</a></CODE>, <CODE><a href="glmunpak.htm">glmunpak</a></CODE>, <CODE><a href="glmfwd.htm">glmfwd</a></CODE>, <CODE><a href="glmerr.htm">glmerr</a></CODE>, <CODE><a href="glmgrad.htm">glmgrad</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>