Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/demgp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual demgp </title> </head> <body> <H1> demgp </H1> <h2> Purpose </h2> Demonstrate simple regression using a Gaussian Process. <p><h2> Synopsis </h2> <PRE> demgp</PRE> <p><h2> Description </h2> The problem consists of one input variable <CODE>x</CODE> and one target variable <CODE>t</CODE>. The values in <CODE>x</CODE> are chosen in two separated clusters and the target data is generated by computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian noise. Two Gaussian Processes, each with different covariance functions are trained by optimising the hyperparameters using the scaled conjugate gradient algorithm. The final predictions are plotted together with 2 standard deviation error bars. <p><h2> See Also </h2> <CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE>, <CODE><a href="gpinit.htm">gpinit</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>