Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/demev3.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual demev3 </title> </head> <body> <H1> demev3 </H1> <h2> Purpose </h2> Demonstrate Bayesian regression for the RBF. <p><h2> Synopsis </h2> <PRE> demev3</PRE> <p><h2> Description </h2> The problem consists an input variable <CODE>x</CODE> which sampled from a Gaussian distribution, and a target variable <CODE>t</CODE> generated by computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian noise. An RBF network with linear outputs is trained by minimizing a sum-of-squares error function with isotropic Gaussian regularizer, using the scaled conjugate gradient optimizer. The hyperparameters <CODE>alpha</CODE> and <CODE>beta</CODE> are re-estimated using the function <CODE>evidence</CODE>. A graph is plotted of the original function, the training data, the trained network function, and the error bars. <p><h2> See Also </h2> <CODE><a href="demev1.htm">demev1</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE>, <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE>, <CODE><a href="netevfwd.htm">netevfwd</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>