Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph_broken.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [Gs, op, nodes] = mk_nbrs_of_digraph(G0) % MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal % [Gs, op, nodes] = mk_nbrs_of_digraph(G0) % % Gs(:,:,i) is the i'th neighbor % op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor. % nodes(i,1:2) are the head and tail of the operated-on arc. debug = 0; % the vectorized version is about 3 to 10 times faster n = length(G0); [I,J] = find(G0); % I(k), J(k) is the k'th edge E = length(I); % num edges present in G0 % SINGLE EDGE DELETIONS Grep = repmat(G0(:), 1, E); % each column is a copy of G0 % edge_ndx(k) is the scalar location of the k'th edge edge_ndx = find(G0); % edge_ndx = subv2ind([n n], [I J]); % equivalent % We set (ndx(k), k) to 0 for k=1:E in Grep ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']); G1 = Grep; G1(ndx) = 0; Gdel = reshape(G1, [n n E]); % if debug % % Non-vectorized version % ctr = 1; % for e=1:E % i = I(e); j = J(e); % Gdel2(:,:,ctr) = G0; % Gdel2(i,j,ctr) = 0; % ctr = ctr + 1; % end % assert(isequal(Gdel, Gdel2)); % end % SINGLE EDGE REVERSALS % rev_edge_ndx(k) is the scalar location of the k'th reversed edge %rev_edge_ndx = find(G0'); % different order to edge_ndx, which is bad rev_edge_ndx = subv2ind([n n], [J I]); % We set (rev_edge_ndx(k), k) to 1 for k=1:E in G1 % We have already deleted i->j in the previous step ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:E)']); G1(ndx) = 1; Grev = reshape(G1, [n n E]); % if debug % % Non-vectorized version % ctr = 1; % for e=1:E % i = I(e); j = J(e); % Grev2(:,:,ctr) = G0; % Grev2(i,j,ctr) = 0; % Grev2(j,i,ctr) = 1; % ctr = ctr + 1; % end % assert(isequal(Grev, Grev2)); % end % SINGLE EDGE ADDITIONS Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0 Gbar = setdiag(Gbar, 0); % turn off self loops [Ibar,Jbar] = find(Gbar); bar_edge_ndx = find(Gbar); Ebar = length(Ibar); % num edges present in Gbar Grep = repmat(G0(:), 1, Ebar); % each column is a copy of G0 ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:Ebar)']); Grep(ndx) = 1; Gadd = reshape(Grep, [n n Ebar]); % if debug % % Non-vectorized version % ctr = 1; % for e=1:length(Ibar) % i = Ibar(e); j = Jbar(e); % Gadd2(:,:,ctr) = G0; % Gadd2(i,j,ctr) = 1; % ctr = ctr + 1; % end % assert(isequal(Gadd, Gadd2)); % end Gs = cat(3, Gdel, Grev, Gadd); nodes = [I J; I J; Ibar Jbar]; op = cell(1, E+E+Ebar); op(1:E) = {'del'}; op(E+1:2*E) = {'rev'}; op(2*E+1:end) = {'add'}; % numeric output: % op(i) = 1, 2, or 3, if the i'th neighbor was created by adding, deleting or reversing an arc. ADD = 1; DEL = 2; REV = 3; %op = [repmat(DEL, 1, E) repmat(REV, 1, E) repmat(ADD, 1, Ebar)];