Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/Old/dag_to_jtree.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges, strong] = ... dag_to_jtree(dag, node_sizes, partial_order, stages, clusters) % DAG_TO_JTREE Moralize and triangulate a DAG, and make a junction tree from its cliques. % [jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges, strong] = ... % dag_to_jtree(dag, node_sizes, partial_order, stages, clusters) % % Input: % dag(i,j) % jtree(i,j) = 1 iff there is an arc between clique i and clique j % root = the root clique % cliques{i} = the nodes in clique i % B(i,j) = 1 iff node j occurs in clique i % w(i) = weight of clique i N = length(bnet.dag); if nargin < 2, obs_nodes = []; end if nargin < 3, stages = { 1:N }; end if nargin < 4, clusters = {}; end [MG, moral_edges] = moralize(bnet.dag); % Add extra arcs between nodes in each cluster to ensure they occur in the same clique for i=1:length(clusters) c = clusters{i}; MG(c,c) = 1; end MG = setdiag(MG, 0); % Find an optimal elimination ordering (NP-hard problem!) ns = bnet.node_sizes(:); ns(obs_nodes) = 1; % observed nodes have only 1 possible value partial_order = determine_elim_constraints(bnet, obs_nodes); if isempty(partial_order) strong = 0; elim_order = best_first_elim_order(MG, ns, stages); else strong = 1; elim_order = strong_elim_order(MG, ns, partial_order); end [MTG, cliques, fill_in_edges] = triangulate(MG, elim_order); % Connect the cliques up into a jtree, [jtree, root, B, w] = cliques_to_jtree(cliques, ns); if 0 disp('testing dag to jtree'); % Find the cliques containing each node, and check they form a connected subtree clqs_con_node = cell(1,N); for i=1:N clqs_con_node{i} = find(B(:,i))'; end check_jtree_property(clqs_con_node, jtree); end