Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/docs/dbn_hmm_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
Example due to Wang Hee Lin" <engp1622@nus.edu.sg intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; Q = 2; % num hidden states O = 2; % num observable symbols ns = [Q O];%number of states dnodes = 1:2; %onodes = [1:2]; % only possible with jtree, not hmm onodes = [2]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes); for i=1:4 bnet.CPD{i} = tabular_CPD(bnet, i); end prior0 = normalise(rand(Q,1)); transmat0 = mk_stochastic(rand(Q,Q)); obsmat0 = mk_stochastic(rand(Q,O)); %engine = smoother_engine(hmm_2TBN_inf_engine(bnet)); engine = smoother_engine(jtree_2TBN_inf_engine(bnet)); ss = 2;%slice size(ss) ncases = 10;%number of examples T=10; max_iter=2;%iterations for EM cases = cell(1, ncases); for i=1:ncases ev = sample_dbn(bnet, T); cases{i} = cell(ss,T); cases{i}(onodes,:) = ev(onodes, :); end [bnet2, LLtrace] = learn_params_dbn_em(engine, cases, 'max_iter', 4);