Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/general/mk_bnet.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_bnet(dag, node_sizes, varargin) % MK_BNET Make a Bayesian network. % % BNET = MK_BNET(DAG, NODE_SIZES, ...) makes a graphical model with an arc from i to j iff DAG(i,j) = 1. % Thus DAG is the adjacency matrix for a directed acyclic graph. % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. % % node_sizes(i) is the number of values node i can take on, % or the length of node i if i is a continuous-valued vector. % node_sizes(i) = 1 if i is a utility node. % % Below are the names of optional arguments [and their default value in brackets]. % Pass as 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ... % % discrete - the list of nodes which are discrete random variables [1:N] % equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N] % observed - the list of nodes which will definitely be observed in every case [ [] ] % 'names' - a cell array of strings to be associated with nodes 1:n [{}] % This creates an associative array, so you write e.g. % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' % assuming names = { 'foo', 'bar', ...}. % % e.g., bnet = mk_bnet(dag, ns, 'discrete', [1 3]) % % For backwards compatibility with BNT2, you can also specify the parameters in the following order % bnet = mk_bnet(dag, node_sizes, discrete_nodes, equiv_class) n = length(dag); % default values for parameters bnet.equiv_class = 1:n; bnet.dnodes = 1:n; % discrete bnet.observed = []; bnet.names = {}; if nargin >= 3 args = varargin; nargs = length(args); if ~isstr(args{1}) if nargs >= 1, bnet.dnodes = args{1}; end if nargs >= 2, bnet.equiv_class = args{2}; end else for i=1:2:nargs switch args{i}, case 'equiv_class', bnet.equiv_class = args{i+1}; case 'discrete', bnet.dnodes = args{i+1}; case 'observed', bnet.observed = args{i+1}; case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); otherwise, error(['invalid argument name ' args{i}]); end end end end bnet.observed = sort(bnet.observed); % for comparing sets bnet.hidden = mysetdiff(1:n, bnet.observed(:)'); bnet.hidden_bitv = zeros(1,n); bnet.hidden_bitv(bnet.hidden) = 1; bnet.dag = dag; bnet.node_sizes = node_sizes(:)'; bnet.cnodes = mysetdiff(1:n, bnet.dnodes); % too many functions refer to cnodes to rename it to cts_nodes - % We hope it won't be confused with chance nodes! bnet.parents = cell(1,n); for i=1:n bnet.parents{i} = parents(dag, i); end E = max(bnet.equiv_class); mem = cell(1,E); for i=1:n e = bnet.equiv_class(i); mem{e} = [mem{e} i]; end bnet.members_of_equiv_class = mem; bnet.CPD = cell(1, E); bnet.rep_of_eclass = zeros(1,E); for e=1:E mems = bnet.members_of_equiv_class{e}; bnet.rep_of_eclass(e) = mems(1); end directed = 1; if ~acyclic(dag,directed) error('graph must be acyclic') end bnet.order = topological_sort(bnet.dag);