Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/sprinkler1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Lawn sprinker example from Russell and Norvig p454 % For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#basics N = 4; dag = zeros(N,N); C = 1; S = 2; R = 3; W = 4; dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1; false = 1; true = 2; ns = 2*ones(1,N); % binary nodes %bnet = mk_bnet(dag, ns); bnet = mk_bnet(dag, ns, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4); names = bnet.names; %C = names{'cloudy'}; bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); CPD{C} = reshape([0.5 0.5], 2, 1); CPD{R} = reshape([0.8 0.2 0.2 0.8], 2, 2); CPD{S} = reshape([0.5 0.9 0.5 0.1], 2, 2); CPD{W} = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], 2, 2, 2); joint = zeros(2,2,2,2); for c=1:2 for r=1:2 for s=1:2 for w=1:2 joint(c,s,r,w) = CPD{C}(c) * CPD{S}(c,s) * CPD{R}(c,r) * ... CPD{W}(s,r,w); end end end end joint2 = repmat(reshape(CPD{C}, [2 1 1 1]), [1 2 2 2]) .* ... repmat(reshape(CPD{S}, [2 2 1 1]), [1 1 2 2]) .* ... repmat(reshape(CPD{R}, [2 1 2 1]), [1 2 1 2]) .* ... repmat(reshape(CPD{W}, [1 2 2 2]), [2 1 1 1]); assert(approxeq(joint, joint2)); engine = jtree_inf_engine(bnet); evidence = cell(1,N); evidence{W} = true; [engine, ll] = enter_evidence(engine, evidence); m = marginal_nodes(engine, S); p1 = m.T(true) % P(S=true|W=true) = 0.4298 lik1 = exp(ll); % P(W=true) = 0.6471 assert(approxeq(p1, 0.4298)); assert(approxeq(lik1, 0.6471)); pSandW = sumv(joint(:,true,:,true), [C R]); % P(S,W) = sum_cr P(CSRW) pW = sumv(joint(:,:,:,true), [C S R]); pSgivenW = pSandW / pW; % P(S=t|W=t) = P(S=t,W=t)/P(W=t) assert(approxeq(pW, lik1)) assert(approxeq(pSgivenW, p1)) m = marginal_nodes(engine, R); p2 = m.T(true) % P(R=true|W=true) = 0.7079 pRandW = sumv(joint(:,:,true,true), [C S]); % P(R,W) = sum_cr P(CSRW) pRgivenW = pRandW / pW; % P(R=t|W=t) = P(R=t,W=t)/P(W=t) assert(approxeq(pRgivenW, p2)) % Add extra evidence that R=true evidence{R} = true; [engine, ll] = enter_evidence(engine, evidence); m = marginal_nodes(engine, S); p3 = m.T(true) % P(S=true|W=true,R=true) = 0.1945 assert(approxeq(p3, 0.1945)) pSandRandW = sumv(joint(:,true,true,true), [C]); % P(S,R,W) = sum_c P(cSRW) pRandW = sumv(joint(:,:,true,true), [C S]); % P(R,W) = sum_cs P(cSRW) pSgivenWR = pSandRandW / pRandW; % P(S=t|W=t,R=t) = P(S=t,R=t,W=t)/P(W=t,R=t) assert(approxeq(pSgivenWR, p3)) % So the sprinkler is less likely to be on if we know that % it is raining, since the rain can "explain away" the fact % that the grass is wet. lik3 = exp(ll); % P(W=true, R=true) = 0.4581 % So the combined evidence is less likely (of course) % Joint distributions evidence = cell(1,N); [engine, ll] = enter_evidence(engine, evidence); m = marginal_nodes(engine, [S R W]); evidence{R} = 2; [engine, ll] = enter_evidence(engine, evidence); m = marginal_nodes(engine, [S R W]);