Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/softmax1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Check that softmax works with a simple classification demo. % Based on netlab's demglm2 % X -> Q where X is an input node, and Q is a softmax rand('state', 0); randn('state', 0); % Check inference input_dim = 2; num_classes = 3; IRLS_iter = 3; net = glm(input_dim, num_classes, 'softmax'); dag = zeros(2); dag(1,2) = 1; discrete_nodes = [2]; bnet = mk_bnet(dag, [input_dim num_classes], 'discrete', discrete_nodes, 'observed', 1); bnet.CPD{1} = root_CPD(bnet, 1); clamped = 0; bnet.CPD{2} = softmax_CPD(bnet, 2, net.w1, net.b1, clamped, IRLS_iter); engine = jtree_inf_engine(bnet); x = rand(1, input_dim); q = glmfwd(net, x); [engine, ll] = enter_evidence(engine, {x, []}); m = marginal_nodes(engine, 2); assert(approxeq(m.T(:), q(:))); % Check learning % We use EM, but in fact there is no hidden data. % The M step will call IRLS on the softmax node. % Generate data from three classes in 2d input_dim = 2; num_classes = 3; % Fix seeds for reproducible results randn('state', 42); rand('state', 42); ndata = 10; % Generate mixture of three Gaussians in two dimensional space data = randn(ndata, input_dim); targets = zeros(ndata, 3); % Priors for the clusters prior(1) = 0.4; prior(2) = 0.3; prior(3) = 0.3; % Cluster centres c = [2.0, 2.0; 0.0, 0.0; 1, -1]; ndata1 = prior(1)*ndata; ndata2 = (prior(1) + prior(2))*ndata; % Put first cluster at (2, 2) data(1:ndata1, 1) = data(1:ndata1, 1) * 0.5 + c(1,1); data(1:ndata1, 2) = data(1:ndata1, 2) * 0.5 + c(1,2); targets(1:ndata1, 1) = 1; % Leave second cluster at (0,0) data((ndata1 + 1):ndata2, :) = ... data((ndata1 + 1):ndata2, :); targets((ndata1+1):ndata2, 2) = 1; data((ndata2+1):ndata, 1) = data((ndata2+1):ndata,1) *0.6 + c(3, 1); data((ndata2+1):ndata, 2) = data((ndata2+1):ndata,2) *0.6 + c(3, 2); targets((ndata2+1):ndata, 3) = 1; if 0 ndata = 1; data = x; targets = [1 0 0]; end options = foptions; options(1) = -1; % verbose options(14) = IRLS_iter; [net2, options2] = glmtrain(net, options, data, targets); net2.ll = options2(8); % type 'help foptions' for details cases = cell(2, ndata); for l=1:ndata q = find(targets(l,:)==1); x = data(l,:); cases{1,l} = x(:); cases{2,l} = q; end max_iter = 2; % we have complete observability, so 1 iter is enough [bnet2, ll2] = learn_params_em(engine, cases, max_iter); w = get_field(bnet2.CPD{2},'weights'); b = get_field(bnet2.CPD{2},'offset')'; w net2.w1 b net2.b1 % assert(approxeq(net2.ll, ll2)); % glmtrain returns ll after final M step, learn_params before