Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/learn1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Lawn sprinker example from Russell and Norvig p454 % See www.cs.berkeley.edu/~murphyk/Bayes/usage.html for details. N = 4; dag = zeros(N,N); C = 1; S = 2; R = 3; W = 4; dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1; false = 1; true = 2; ns = 2*ones(1,N); % binary nodes bnet = mk_bnet(dag, ns); bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); CPT = cell(1,N); for i=1:N s=struct(bnet.CPD{i}); % violate object privacy CPT{i}=s.CPT; end % Generate training data nsamples = 50; samples = cell(N, nsamples); for i=1:nsamples samples(:,i) = sample_bnet(bnet); end data = cell2num(samples); % Make a tabula rasa bnet2 = mk_bnet(dag, ns); seed = 0; rand('state', seed); bnet2.CPD{C} = tabular_CPD(bnet2, C, 'clamped', 1, 'CPT', [0.5 0.5], ... 'prior_type', 'dirichlet', 'dirichlet_weight', 0); bnet2.CPD{R} = tabular_CPD(bnet2, R, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); bnet2.CPD{S} = tabular_CPD(bnet2, S, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); bnet2.CPD{W} = tabular_CPD(bnet2, W, 'prior_type', 'dirichlet', 'dirichlet_weight', 0); % Find MLEs from fully observed data bnet4 = learn_params(bnet2, samples); % Bayesian updating with 0 prior is equivalent to ML estimation bnet5 = bayes_update_params(bnet2, samples); CPT4 = cell(1,N); for i=1:N s=struct(bnet4.CPD{i}); % violate object privacy CPT4{i}=s.CPT; end CPT5 = cell(1,N); for i=1:N s=struct(bnet5.CPD{i}); % violate object privacy CPT5{i}=s.CPT; assert(approxeq(CPT5{i}, CPT4{i})) end if 1 % Find MLEs from partially observed data % hide 50% of the nodes samplesH = samples; hide = rand(N, nsamples) > 0.5; [I,J]=find(hide); for k=1:length(I) samplesH{I(k), J(k)} = []; end engine = jtree_inf_engine(bnet2); max_iter = 5; [bnet6, LL] = learn_params_em(engine, samplesH, max_iter); CPT6 = cell(1,N); for i=1:N s=struct(bnet6.CPD{i}); % violate object privacy CPT6{i}=s.CPT; end end