Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Online Bayesian model selection demo. % We generate data from the model A->B % and compute the posterior prob of all 3 dags on 2 nodes: % (1) A B, (2) A <- B , (3) A -> B % Models 2 and 3 are Markov equivalent, and therefore indistinguishable from % observational data alone. % We control the dependence of B on A by setting % P(B|A) = 0.5 - epislon and vary epsilon % as in Koller & Friedman book p512 % ground truth N = 2; dag = zeros(N); A = 1; B = 2; dag(A,B) = 1; ntrials = 100; ns = 2*ones(1,N); true_bnet = mk_bnet(dag, ns); true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]); % hypothesis space G = mk_all_dags(N); nhyp = length(G); hyp_bnet = cell(1, nhyp); for h=1:nhyp hyp_bnet{h} = mk_bnet(G{h}, ns); for i=1:N % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable. % The uniform Dirichlet prior is not score equivalent... fam = family(G{h}, i); hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ... 'CPT', 'unif'); end end clf seeds = 1:3; expt = 1; for seedi=1:length(seeds) seed = seeds(seedi); rand('state', seed); randn('state', seed); es = [0.05 0.1 0.15 0.2]; for ei=1:length(es) e = es(ei); true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [0.5+e 0.5-e; 0.5-e 0.5+e]); prior = normalise(ones(1, nhyp)); hyp_w = zeros(ntrials+1, nhyp); hyp_w(1,:) = prior(:)'; LL = zeros(1, nhyp); ll = zeros(1, nhyp); for t=1:ntrials ev = cell2num(sample_bnet(true_bnet)); for i=1:nhyp ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev); hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev); end prior = normalise(prior .* exp(ll)); LL = LL + ll; hyp_w(t+1,:) = prior; end % Plot posterior model probabilities % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc) % Blue = model 2 (2->1) % Green = model 3 (1->2, "ground truth") subplot2(length(seeds), length(es), seedi, ei); m = size(hyp_w,1); h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:'); axis([0 m 0 1]) %title('model posterior vs. time') title(sprintf('e=%3.2f, seed=%d', e, seed)); drawnow expt = expt + 1; end end