Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Bayesian model selection demo. % We generate data from the model A->B % and compute the posterior prob of all 3 dags on 2 nodes: % (1) A B, (2) A <- B , (3) A -> B % Models 2 and 3 are Markov equivalent, and therefore indistinguishable from % observational data alone. % Using the "difficult" params, the true model only gets a higher posterior after 2000 trials! % However, using the noisy NOT gate, the true model wins after 12 trials. % ground truth N = 2; dag = zeros(N); A = 1; B = 2; dag(A,B) = 1; difficult = 0; if difficult ntrials = 2000; ns = 3*ones(1,N); true_bnet = mk_bnet(dag, ns); rand('state', 0); temp = 5; for i=1:N %true_bnet.CPD{i} = tabular_CPD(true_bnet, i, temp); true_bnet.CPD{i} = tabular_CPD(true_bnet, i); end else ntrials = 25; ns = 2*ones(1,N); true_bnet = mk_bnet(dag, ns); true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]); pfail = 0.1; psucc = 1-pfail; true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [pfail psucc; psucc pfail]); % NOT gate end G = mk_all_dags(N); nhyp = length(G); hyp_bnet = cell(1, nhyp); for h=1:nhyp hyp_bnet{h} = mk_bnet(G{h}, ns); for i=1:N % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable. % The uniform Dirichlet prior is not score equivalent... fam = family(G{h}, i); hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ... 'CPT', 'unif'); end end prior = normalise(ones(1, nhyp)); % save results before doing sequential updating init_hyp_bnet = hyp_bnet; init_prior = prior; rand('state', 0); hyp_w = zeros(ntrials+1, nhyp); hyp_w(1,:) = prior(:)'; data = zeros(N, ntrials); % First we compute the posteriors sequentially LL = zeros(1, nhyp); ll = zeros(1, nhyp); for t=1:ntrials ev = cell2num(sample_bnet(true_bnet)); data(:,t) = ev; for i=1:nhyp ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev); hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev); end prior = normalise(prior .* exp(ll)); LL = LL + ll; hyp_w(t+1,:) = prior; end % Plot posterior model probabilities % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc) % Blue = model 2 (2->1) % Green = model 3 (1->2, "ground truth") if 1 figure; m = size(hyp_w, 1); h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:'); axis([0 m 0 1]) title('model posterior vs. time') %previewfig(gcf, 'format', 'png', 'height', 2, 'color', 'rgb') %exportfig(gcf, '/home/cs/murphyk/public_html/Bayes/Figures/model_select.png',... %'format', 'png', 'height', 2, 'color', 'rgb') drawnow end % Now check that batch updating gives same result hyp_bnet2 = init_hyp_bnet; prior2 = init_prior; cases = num2cell(data); LL2 = zeros(1, nhyp); for i=1:nhyp LL2(i) = log_marg_lik_complete(hyp_bnet2{i}, cases); hyp_bnet2{i} = bayes_update_params(hyp_bnet2{i}, cases); end assert(approxeq(LL, LL2)) LL for i=1:nhyp for j=1:N s1 = struct(hyp_bnet{i}.CPD{j}); s2 = struct(hyp_bnet2{i}.CPD{j}); assert(approxeq(s1.CPT, s2.CPT)) end end