Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_water_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_water_dbn(discrete_obs, obs_leaves) % MK_WATER_DBN % bnet = mk_water_dbn(discrete_obs, obs_leaves) % % If discrete_obs = 1 (default), the leaves are binary, else scalar Gaussians % If obs_leaves = 1, all the leaves are observed, otherwise rnd nodes are observed % % This is a model of the biological processes of a water purification plant, developed % by Finn V. Jensen, Uffe Kjærulff, Kristian G. Olesen, and Jan Pedersen. % See http://www-nt.cs.berkeley.edu/home/nir/public_html/Repository/water.htm % See also Boyen and Koller, "Tractable Inference for Complex Stochastic Processes", UAI98 if nargin < 1, discrete_obs = 1; end if nargin < 1, obs_leaves = 1; end ss = 12; intra = zeros(ss); intra(1,9) = 1; intra(3,10) = 1; intra(4,11) = 1; intra(8,12) = 1; inter = zeros(ss); inter(1, [1 3]) = 1; inter(2, [2 3 7]) = 1; inter(3, [3 4 5]) = 1; inter(4, [3 4 6]) = 1; inter(5, [3 5 6]) = 1; inter(6, [4 5 6]) = 1; inter(7, [7 8]) = 1; inter(8, [6 7 8]) = 1; if obs_leaves onodes = 9:12; % leaves else onodes = [1 5 9:12]; % throw in some other nodes end hnodes = 1:8; if discrete_obs ns = 2*ones(1 ,ss); dnodes = 1:ss; else ns = [2*ones(1,length(hnodes)) 1*ones(length(onodes))]; dnodes = hnodes; end eclass1 = 1:12; eclass2 = [13:20 9:12]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes); if discrete_obs for i=1:max(eclass2) bnet.CPD{i} = tabular_CPD(bnet, i); end else for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i); end for i=onodes(:)' bnet.CPD{i} = gaussian_CPD(bnet, i); end for i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i); end end