Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/arhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make an HMM with autoregressive Gaussian observations (switching AR model) % X1 -> X2 % | | % v v % Y1 -> Y2 seed = 0; rand('state', seed); randn('state', seed); intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; inter(2,2) = 1; n = 2; Q = 2; % num hidden states O = 2; % size of observed vector ns = [Q O]; dnodes = 1; onodes = [2]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes); bnet.CPD{1} = tabular_CPD(bnet, 1); bnet.CPD{2} = gaussian_CPD(bnet, 2); bnet.CPD{3} = tabular_CPD(bnet, 3); bnet.CPD{4} = gaussian_CPD(bnet, 4); T = 10; % fixed length sequences engine = {}; %engine{end+1} = hmm_inf_engine(bnet); engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); %engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); %engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll',1); learning_time = cmp_learning_dbn(bnet, engine, T, 'check_ll', 1);