Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/learning_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make a point move in the 2D plane % State = (x y xdot ydot). We only observe (x y). % Generate data from this process, and try to learn the dynamics back. % X(t+1) = F X(t) + noise(Q) % Y(t) = H X(t) + noise(R) ss = 4; % state size os = 2; % observation size F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]; H = [1 0 0 0; 0 1 0 0]; Q = 0.1*eye(ss); R = 1*eye(os); initx = [10 10 1 0]'; initV = 10*eye(ss); seed = 1; rand('state', seed); randn('state', seed); T = 100; [x,y] = sample_lds(F, H, Q, R, initx, T); % Initializing the params to sensible values is crucial. % Here, we use the true values for everything except F and H, % which we initialize randomly (bad idea!) % Lack of identifiability means the learned params. are often far from the true ones. % All that EM guarantees is that the likelihood will increase. F1 = randn(ss,ss); H1 = randn(os,ss); Q1 = Q; R1 = R; initx1 = initx; initV1 = initV; max_iter = 10; [F2, H2, Q2, R2, initx2, initV2, LL] = learn_kalman(y, F1, H1, Q1, R1, initx1, initV1, max_iter);