Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/learn_kalman.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [A, C, Q, R, initx, initV, LL] = ... learn_kalman(data, A, C, Q, R, initx, initV, max_iter, diagQ, diagR, ARmode, constr_fun, varargin) % LEARN_KALMAN Find the ML parameters of a stochastic Linear Dynamical System using EM. % % [A, C, Q, R, INITX, INITV, LL] = LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0) fits % the parameters which are defined as follows % x(t+1) = A*x(t) + w(t), w ~ N(0, Q), x(0) ~ N(init_x, init_V) % y(t) = C*x(t) + v(t), v ~ N(0, R) % A0 is the initial value, A is the final value, etc. % DATA(:,t,l) is the observation vector at time t for sequence l. If the sequences are of % different lengths, you can pass in a cell array, so DATA{l} is an O*T matrix. % LL is the "learning curve": a vector of the log lik. values at each iteration. % LL might go positive, since prob. densities can exceed 1, although this probably % indicates that something has gone wrong e.g., a variance has collapsed to 0. % % There are several optional arguments, that should be passed in the following order. % LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0, MAX_ITER, DIAGQ, DIAGR, ARmode) % MAX_ITER specifies the maximum number of EM iterations (default 10). % DIAGQ=1 specifies that the Q matrix should be diagonal. (Default 0). % DIAGR=1 specifies that the R matrix should also be diagonal. (Default 0). % ARMODE=1 specifies that C=I, R=0. i.e., a Gauss-Markov process. (Default 0). % This problem has a global MLE. Hence the initial parameter values are not important. % % LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0, MAX_ITER, DIAGQ, DIAGR, F, P1, P2, ...) % calls [A,C,Q,R,initx,initV] = f(A,C,Q,R,initx,initV,P1,P2,...) after every M step. f can be % used to enforce any constraints on the params. % % For details, see % - Ghahramani and Hinton, "Parameter Estimation for LDS", U. Toronto tech. report, 1996 % - Digalakis, Rohlicek and Ostendorf, "ML Estimation of a stochastic linear system with the EM % algorithm and its application to speech recognition", % IEEE Trans. Speech and Audio Proc., 1(4):431--442, 1993. % learn_kalman(data, A, C, Q, R, initx, initV, max_iter, diagQ, diagR, ARmode, constr_fun, varargin) if nargin < 8, max_iter = 10; end if nargin < 9, diagQ = 0; end if nargin < 10, diagR = 0; end if nargin < 11, ARmode = 0; end if nargin < 12, constr_fun = []; end verbose = 1; thresh = 1e-4; if ~iscell(data) N = size(data, 3); data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell else N = length(data); end N = length(data); ss = size(A, 1); os = size(C,1); alpha = zeros(os, os); Tsum = 0; for ex = 1:N %y = data(:,:,ex); y = data{ex}; T = length(y); Tsum = Tsum + T; alpha_temp = zeros(os, os); for t=1:T alpha_temp = alpha_temp + y(:,t)*y(:,t)'; end alpha = alpha + alpha_temp; end previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; % Convert to inline function as needed. if ~isempty(constr_fun) constr_fun = fcnchk(constr_fun,length(varargin)); end while ~converged & (num_iter <= max_iter) %%% E step delta = zeros(os, ss); gamma = zeros(ss, ss); gamma1 = zeros(ss, ss); gamma2 = zeros(ss, ss); beta = zeros(ss, ss); P1sum = zeros(ss, ss); x1sum = zeros(ss, 1); loglik = 0; for ex = 1:N y = data{ex}; T = length(y); [beta_t, gamma_t, delta_t, gamma1_t, gamma2_t, x1, V1, loglik_t] = ... Estep(y, A, C, Q, R, initx, initV, ARmode); beta = beta + beta_t; gamma = gamma + gamma_t; delta = delta + delta_t; gamma1 = gamma1 + gamma1_t; gamma2 = gamma2 + gamma2_t; P1sum = P1sum + V1 + x1*x1'; x1sum = x1sum + x1; %fprintf(1, 'example %d, ll/T %5.3f\n', ex, loglik_t/T); loglik = loglik + loglik_t; end LL = [LL loglik]; if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end %fprintf(1, 'iteration %d, loglik/NT = %f\n', num_iter, loglik/Tsum); num_iter = num_iter + 1; %%% M step % Tsum = N*T % Tsum1 = N*(T-1); Tsum1 = Tsum - N; A = beta * inv(gamma1); %A = (gamma1' \ beta')'; Q = (gamma2 - A*beta') / Tsum1; if diagQ Q = diag(diag(Q)); end if ~ARmode C = delta * inv(gamma); %C = (gamma' \ delta')'; R = (alpha - C*delta') / Tsum; if diagR R = diag(diag(R)); end end initx = x1sum / N; initV = P1sum/N - initx*initx'; if ~isempty(constr_fun) [A,C,Q,R,initx,initV] = feval(constr_fun, A, C, Q, R, initx, initV, varargin{:}); end converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; end %%%%%%%%% function [beta, gamma, delta, gamma1, gamma2, x1, V1, loglik] = ... Estep(y, A, C, Q, R, initx, initV, ARmode) % % Compute the (expected) sufficient statistics for a single Kalman filter sequence. % [os T] = size(y); ss = length(A); if ARmode xsmooth = y; Vsmooth = zeros(ss, ss, T); % no uncertainty about the hidden states VVsmooth = zeros(ss, ss, T); loglik = 0; else [xsmooth, Vsmooth, VVsmooth, loglik] = kalman_smoother(y, A, C, Q, R, initx, initV); end delta = zeros(os, ss); gamma = zeros(ss, ss); beta = zeros(ss, ss); for t=1:T delta = delta + y(:,t)*xsmooth(:,t)'; gamma = gamma + xsmooth(:,t)*xsmooth(:,t)' + Vsmooth(:,:,t); if t>1 beta = beta + xsmooth(:,t)*xsmooth(:,t-1)' + VVsmooth(:,:,t); end end gamma1 = gamma - xsmooth(:,T)*xsmooth(:,T)' - Vsmooth(:,:,T); gamma2 = gamma - xsmooth(:,1)*xsmooth(:,1)' - Vsmooth(:,:,1); x1 = xsmooth(:,1); V1 = Vsmooth(:,:,1);