Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/learn_AR_diagonal.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [coef, C] = learn_AR_diagonal(y, k) % Find the ML parameters for a collection of independent scalar AR processes. % sep_coef(1,1,t,i) is the coefficient to apply to compopnent i of the state vector t steps ago % eg. consider two components L and R and let A = coef(:,:,1,:), B = coef(:,:,2,:) % L3 (AL 0 BL 0) (L2) (CL 0 0 0) % R3 = (0 AR 0 BR) (R2) (0 CR 0 0) % L2 (1 0 0 0 ) (L1) + (0 0 0 0) % R2 (0 1 0 0 ) (R1) (0 0 0 0) ss = size(y, 1); sep_coef = zeros(1,1,k,ss); for i=1:ss [sep_coef(:,:,:,i), sep_cov(i)] = learn_AR(k, y(i,:)); end C = diag(sep_cov); for t=1:k x = sep_coef(1,1,t,:); coef(:,:,t) = diag(x(:)); end