Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/weightedRegression.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [a, b, error] = weightedRegression(x, z, w) % [a , b, error] = fitRegression(x, z, w); % % Weighted scalar linear regression % % Find a,b to minimize % error = sum(w * |z - (a*x + b)|^2) % and x(i) is a scalar if nargin < 3, w = ones(1,length(x)); end w = w(:)'; x = x(:)'; z = z(:)'; W = sum(w); Y = sum(w .* z); YY = sum(w .* z .* z); YTY = sum(w .* z .* z); X = sum(w .* x); XX = sum(w .* x .* x); XY = sum(w .* x .* z); [b, a] = clg_Mstep_simple(W, Y, YY, YTY, X, XX, XY); error = sum(w .* (z - (a*x + b)).^2 ); if 0 % demo seed = 1; rand('state', seed); randn('state', seed); x = -10:10; N = length(x); noise = randn(1,N); aTrue = rand(1,1); bTrue = rand(1,1); z = aTrue*x + bTrue + noise; w = ones(1,N); [a, b, err] = weightedRegression(x, z, w); b2=regress(z(:), [x(:) ones(N,1)]); assert(approxeq(b,b2(2))) assert(approxeq(a,b2(1))) % Make sure we go through x(15) perfectly w(15) = 1000; [aW, bW, errW] = weightedRegression(x, z, w); figure; plot(x, z, 'ro') hold on plot(x, a*x+b, 'bx-') plot(x, aW*x+bW, 'gs-') title(sprintf('a=%5.2f, aHat=%5.2f, aWHat=%5.3f, b=%5.2f, bHat=%5.2f, bWHat=%5.3f, err=%5.3f, errW=%5.3f', ... aTrue, a, aW, bTrue, b, bW, err, errW)) legend('truth', 'ls', 'wls') end