Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/parzen.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [B,B2,dist] = parzen(data, mu, Sigma, N) % EVAL_PDF_COND_PARZEN Evaluate the pdf of a conditional Parzen window % function B = eval_pdf_cond_parzen(data, mu, Sigma, N) % % B(q,t) = Pr(data(:,t) | Q=q) = sum_{m=1}^{N(q)} w(m,q)*K(data(:,t) - mu(:,m,q); sigma) % where K() is a Gaussian kernel with spherical variance sigma, % and w(m,q) = 1/N(q) if m<=N(q) and = 0 otherwise % where N(q) is the number of mxiture components for q % % B2(m,q,t) = K(data(:,t) - mu(:,m,q); sigma) for m=1:max(N) % This is like eval_pdf_cond_parzen, except mu is mu(:,m,q) instead of mu(:,q,m) % and we use 1/N(q) instead of mixmat(q,m) if nargout >= 2 keep_B2 = 1; else keep_B2 = 0; end if nargout >= 3 keep_dist = 1; else keep_dist = 0; end [d M Q] = size(mu); [d T] = size(data); M = max(N(:)); B = zeros(Q,T); const1 = (2*pi*Sigma)^(-d/2); const2 = -(1/(2*Sigma)); if T*Q*M>20000000 % not enough memory to call sqdist disp('eval parzen for loop') if keep_dist, dist = zeros(M,Q,T); end if keep_B2 B2 = zeros(M,Q,T); end for q=1:Q D = sqdist(mu(:,1:N(q),q), data); % D(m,t) if keep_dist dist(:,q,:) = D; end tmp = const1 * exp(const2*D); if keep_B2, B2(:,q,:) = tmp; end if N(q) > 0 %B(q,:) = (1/N(q)) * const1 * sum(exp(const2*D), 2); B(q,:) = (1/N(q)) * sum(tmp,1); end end else %disp('eval parzen vectorized') dist = sqdist(reshape(mu(:,1:M,:), [d M*Q]), data); % D(mq,t) dist = reshape(dist, [M Q T]); B2 = const1 * exp(const2*dist); % B2(m,q,t) if ~keep_dist clear dist end % weights(m,q) is the weight of mixture component m for q % = 1/N(q) if m<=N(q) and = 0 otherwise % e.g., N = [2 3 1], M = 3, % weights = [1/2 1/3 1 = 1/2 1/3 1/1 2 3 1 1 1 1 % 1/2 1/3 0 1/2 1/3 1/1 .* 2 3 1 <= 2 2 2 % 0 1/3 0] 1/2 1/3 1/1 2 3 1 3 3 3 Ns = repmat(N(:)', [M 1]); ramp = 1:M; ramp = repmat(ramp(:), [1 Q]); n = N + (N==0); % avoid 1/0 by replacing with 0* 1/1m where 0 comes from mask N1 = repmat(1 ./ n(:)', [M 1]); mask = (ramp <= Ns); weights = N1 .* mask; B2 = B2 .* repmat(mask, [1 1 T]); % B(q,t) = sum_m B2(m,q,t) * P(m|q) = sum_m B2(m,q,t) * weights(m,q) B = squeeze(sum(B2 .* repmat(weights, [1 1 T]), 1)); B = reshape(B, [Q T]); % undo effect of squeeze in case Q = 1 end