Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/logistK_eval.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [post,lik,lli] = logistK_eval(beta,x,y) % [post,lik,lli] = logistK_eval(beta,x,y) % % Evaluate logistic regression model. % % INPUT % beta dxk model coefficients (as returned by logistK) % x dxn matrix of n input column vectors % [y] kxn vector of class assignments % % OUTPUT % post kxn fitted class posteriors % lik 1xn vector of sample likelihoods % lli log likelihood % % Let p(i,j) = exp(beta(:,j)'*x(:,i)), % Class j posterior for observation i is: % post(j,i) = p(i,j) / (p(i,1) + ... p(i,k)) % The likelihood of observation i given soft class assignments % y(:,i) is: % lik(i) = prod(post(:,i).^y(:,i)) % The log-likelihood of the model given the labeled samples is: % lli = sum(log(lik)) % % See also logistK. % % David Martin <dmartin@eecs.berkeley.edu> % May 7, 2002 % Copyright (C) 2002 David R. Martin <dmartin@eecs.berkeley.edu> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA % 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html. error(nargchk(2,3,nargin)); % check sizes if size(beta,1) ~= size(x,1), error('Inputs beta,x not the same height.'); end if nargin > 3 & size(y,2) ~= size(x,2), error('Inputs x,y not the same length.'); end % get sizes [d,k] = size(beta); [d,n] = size(x); % class posteriors post = zeros(k,n); bx = zeros(k,n); for j = 1:k, bx(j,:) = beta(:,j)'*x; end for j = 1:k, post(j,:) = 1 ./ sum(exp(bx - repmat(bx(j,:),k,1)),1); end clear bx; % likelihood of each sample if nargout > 1, y = y ./ repmat(sum(y,1),k,1); % L1-normalize class assignments lik = prod(post.^y,1); end % total log likelihood if nargout > 2, lli = sum(log(lik+eps)); end; % eof