Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/logist2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [beta,p,lli] = logist2(y,x,w) % [beta,p,lli] = logist2(y,x) % % 2-class logistic regression. % % INPUT % y Nx1 colum vector of 0|1 class assignments % x NxK matrix of input vectors as rows % [w] Nx1 vector of sample weights % % OUTPUT % beta Kx1 column vector of model coefficients % p Nx1 column vector of fitted class 1 posteriors % lli log likelihood % % Class 1 posterior is 1 / (1 + exp(-x*beta)) % % David Martin <dmartin@eecs.berkeley.edu> % April 16, 2002 % Copyright (C) 2002 David R. Martin <dmartin@eecs.berkeley.edu> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA % 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html. error(nargchk(2,3,nargin)); % check inputs if size(y,2) ~= 1, error('Input y not a column vector.'); end if size(y,1) ~= size(x,1), error('Input x,y sizes mismatched.'); end % get sizes [N,k] = size(x); % if sample weights weren't specified, set them to 1 if nargin < 3, w = 1; end % normalize sample weights so max is 1 w = w / max(w); % initial guess for beta: all zeros beta = zeros(k,1); % Newton-Raphson via IRLS, % taken from Hastie/Tibshirani/Friedman Section 4.4. iter = 0; lli = 0; while 1==1, iter = iter + 1; % fitted probabilities p = 1 ./ (1 + exp(-x*beta)); % log likelihood lli_prev = lli; lli = sum( w .* (y.*log(p+eps) + (1-y).*log(1-p+eps)) ); % least-squares weights wt = w .* p .* (1-p); % derivatives of likelihood w.r.t. beta deriv = x'*(w.*(y-p)); % Hessian of likelihood w.r.t. beta % hessian = x'Wx, where W=diag(w) % Do it this way to be memory efficient and fast. hess = zeros(k,k); for i = 1:k, wxi = wt .* x(:,i); for j = i:k, hij = wxi' * x(:,j); hess(i,j) = -hij; hess(j,i) = -hij; end end % make sure Hessian is well conditioned if (rcond(hess) < eps), error(['Stopped at iteration ' num2str(iter) ... ' because Hessian is poorly conditioned.']); break; end; % Newton-Raphson update step step = hess\deriv; beta = beta - step; % termination criterion based on derivatives tol = 1e-6; if abs(deriv'*step/k) < tol, break; end; % termination criterion based on log likelihood % tol = 1e-4; % if abs((lli-lli_prev)/(lli+lli_prev)) < 0.5*tol, break; end; end;