Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/cwr_predict.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [mu, Sigma, weights, mask] = cwr_predict(cwr, X, mask_data) % CWR_PREDICT cluster weighted regression: predict Y given X % function [mu, Sigma] = cwr_predict(cwr, X) % % mu(:,t) = E[Y|X(:,t)] = sum_c P(c | X(:,t)) E[Y|c, X(:,t)] % Sigma(:,:,t) = Cov[Y|X(:,t)] % % [mu, Sigma, weights, mask] = cwr_predict(cwr, X, mask_data) % mask(i) = sum_t sum_c p(mask_data(:,i) | X(:,t), c) P(c|X(:,t)) % This evaluates the predictive density on a set of points % (This is only sensible if T=1, ie. X is a single vector) [nx T] = size(X); [ny nx nc] = size(cwr.weightsY); mu = zeros(ny, T); Sigma = zeros(ny, ny, T); if nargout == 4 comp_mask = 1; N = size(mask_data,2); mask = zeros(N,1); else comp_mask = 0; end if nc==1 if isempty(cwr.weightsY) mu = repmat(cwr.muY, 1, T); Sigma = repmat(cwr.SigmaY, [1 1 T]); else mu = repmat(cwr.muY, 1, T) + cwr.weightsY * X; Sigma = repmat(cwr.SigmaY, [1 1 T]); %for t=1:T % mu(:,t) = cwr.muY + cwr.weightsY*X(:,t); % Sigma(:,:,t) = cwr.SigmaY; %end end if comp_mask, mask = gaussian_prob(mask_data, mu, Sigma); end weights = []; return; end % likX(c,t) = p(x(:,t) | c) likX = mixgauss_prob(X, cwr.muX, cwr.SigmaX); weights = normalize(repmat(cwr.priorC, 1, T) .* likX, 1); for t=1:T mut = zeros(ny, nc); for c=1:nc mut(:,c) = cwr.muY(:,c) + cwr.weightsY(:,:,c)*X(:,t); if comp_mask mask = mask + gaussian_prob(mask_data, mut(:,c), cwr.SigmaY(:,:,c)) * weights(c); end end %w = normalise(cwr.priorC(:) .* likX(:,t)); [mu(:,t), Sigma(:,:,t)] = collapse_mog(mut, cwr.SigmaY, weights(:,t)); end