Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/clg_Mstep.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [mu, Sigma, B] = clg_Mstep(w, Y, YY, YTY, X, XX, XY, varargin) % MSTEP_CLG Compute ML/MAP estimates for a conditional linear Gaussian % [mu, Sigma, B] = Mstep_clg(w, Y, YY, YTY, X, XX, XY, varargin) % % We fit P(Y|X,Q=i) = N(Y; B_i X + mu_i, Sigma_i) % and w(i,t) = p(M(t)=i|y(t)) = posterior responsibility % See www.ai.mit.edu/~murphyk/Papers/learncg.pdf. % % See process_options for how to specify the input arguments. % % INPUTS: % w(i) = sum_t w(i,t) = responsibilities for each mixture component % If there is only one mixture component (i.e., Q does not exist), % then w(i) = N = nsamples, and % all references to i can be replaced by 1. % Y(:,i) = sum_t w(i,t) y(:,t) = weighted observations % YY(:,:,i) = sum_t w(i,t) y(:,t) y(:,t)' = weighted outer product % YTY(i) = sum_t w(i,t) y(:,t)' y(:,t) = weighted inner product % You only need to pass in YTY if Sigma is to be estimated as spherical. % % In the regression context, we must also pass in the following % X(:,i) = sum_t w(i,t) x(:,t) = weighted inputs % XX(:,:,i) = sum_t w(i,t) x(:,t) x(:,t)' = weighted outer product % XY(i) = sum_t w(i,t) x(:,t) y(:,t)' = weighted outer product % % Optional inputs (default values in []) % % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0] % 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ] % 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ] % 'clamped_weights' - pass in clamped value, or [] if unclamped [ [] ] % 'cov_prior' - added to Sigma(:,:,i) to ensure psd [0.01*eye(d,d,Q)] % % If cov is tied, Sigma has size d*d. % But diagonal and spherical covariances are represented in full size. [cov_type, tied_cov, ... clamped_cov, clamped_mean, clamped_weights, cov_prior, ... xs, ys, post] = ... process_options(varargin, ... 'cov_type', 'full', 'tied_cov', 0, 'clamped_cov', [], 'clamped_mean', [], ... 'clamped_weights', [], 'cov_prior', [], ... 'xs', [], 'ys', [], 'post', []); [Ysz Q] = size(Y); if isempty(X) % no regression %B = []; B2 = zeros(Ysz, 1, Q); for i=1:Q B(:,:,i) = B2(:,1:0,i); % make an empty array of size Ysz x 0 x Q end [mu, Sigma] = mixgauss_Mstep(w, Y, YY, YTY, varargin{:}); return; end N = sum(w); if isempty(cov_prior) cov_prior = 0.01*repmat(eye(Ysz,Ysz), [1 1 Q]); end %YY = YY + cov_prior; % regularize the scatter matrix % Set any zero weights to one before dividing % This is valid because w(i)=0 => Y(:,i)=0, etc w = w + (w==0); Xsz = size(X,1); % Append 1 to X to get Z ZZ = zeros(Xsz+1, Xsz+1, Q); ZY = zeros(Xsz+1, Ysz, Q); for i=1:Q ZZ(:,:,i) = [XX(:,:,i) X(:,i); X(:,i)' w(i)]; ZY(:,:,i) = [XY(:,:,i); Y(:,i)']; end %%% Estimate mean and regression if ~isempty(clamped_weights) & ~isempty(clamped_mean) B = clamped_weights; mu = clamped_mean; end if ~isempty(clamped_weights) & isempty(clamped_mean) B = clamped_weights; % eqn 5 mu = zeros(Ysz, Q); for i=1:Q mu(:,i) = (Y(:,i) - B(:,:,i)*X(:,i)) / w(i); end end if isempty(clamped_weights) & ~isempty(clamped_mean) mu = clamped_mean; % eqn 3 B = zeros(Ysz, Xsz, Q); for i=1:Q tmp = XY(:,:,i)' - mu(:,i)*X(:,i)'; %B(:,:,i) = tmp * inv(XX(:,:,i)); B(:,:,i) = (XX(:,:,i) \ tmp')'; end end if isempty(clamped_weights) & isempty(clamped_mean) mu = zeros(Ysz, Q); B = zeros(Ysz, Xsz, Q); % Nothing is clamped, so we must estimate B and mu jointly for i=1:Q % eqn 9 if rcond(ZZ(:,:,i)) < 1e-10 sprintf('clg_Mstep warning: ZZ(:,:,%d) is ill-conditioned', i); % probably because there are too few cases for a high-dimensional input ZZ(:,:,i) = ZZ(:,:,i) + 1e-5*eye(Xsz+1); end %A = ZY(:,:,i)' * inv(ZZ(:,:,i)); A = (ZZ(:,:,i) \ ZY(:,:,i))'; B(:,:,i) = A(:, 1:Xsz); mu(:,i) = A(:, Xsz+1); end end if ~isempty(clamped_cov) Sigma = clamped_cov; return; end %%% Estimate covariance % Spherical if cov_type(1)=='s' if ~tied_cov Sigma = zeros(Ysz, Ysz, Q); for i=1:Q % eqn 16 A = [B(:,:,i) mu(:,i)]; %s = trace(YTY(i) + A'*A*ZZ(:,:,i) - 2*A*ZY(:,:,i)) / (Ysz*w(i)); % wrong! s = (YTY(i) + trace(A'*A*ZZ(:,:,i)) - trace(2*A*ZY(:,:,i))) / (Ysz*w(i)); Sigma(:,:,i) = s*eye(Ysz,Ysz); %%%%%%%%%%%%%%%%%%% debug if ~isempty(xs) [nx T] = size(xs); zs = [xs; ones(1,T)]; yty = 0; zAAz = 0; yAz = 0; for t=1:T yty = yty + ys(:,t)'*ys(:,t) * post(i,t); zAAz = zAAz + zs(:,t)'*A'*A*zs(:,t)*post(i,t); yAz = yAz + ys(:,t)'*A*zs(:,t)*post(i,t); end assert(approxeq(yty, YTY(i))) assert(approxeq(zAAz, trace(A'*A*ZZ(:,:,i)))) assert(approxeq(yAz, trace(A*ZY(:,:,i)))) s2 = (yty + zAAz - 2*yAz) / (Ysz*w(i)); assert(approxeq(s,s2)) end %%%%%%%%%%%%%%% end debug end else S = 0; for i=1:Q % eqn 18 A = [B(:,:,i) mu(:,i)]; S = S + trace(YTY(i) + A'*A*ZZ(:,:,i) - 2*A*ZY(:,:,i)); end Sigma = repmat(S / (N*Ysz), [1 1 Q]); end else % Full/diagonal if ~tied_cov Sigma = zeros(Ysz, Ysz, Q); for i=1:Q A = [B(:,:,i) mu(:,i)]; % eqn 10 SS = (YY(:,:,i) - ZY(:,:,i)'*A' - A*ZY(:,:,i) + A*ZZ(:,:,i)*A') / w(i); if cov_type(1)=='d' Sigma(:,:,i) = diag(diag(SS)); else Sigma(:,:,i) = SS; end end else % tied SS = zeros(Ysz, Ysz); for i=1:Q A = [B(:,:,i) mu(:,i)]; % eqn 13 SS = SS + (YY(:,:,i) - ZY(:,:,i)'*A' - A*ZY(:,:,i) + A*ZZ(:,:,i)*A'); end SS = SS / N; if cov_type(1)=='d' Sigma = diag(diag(SS)); else Sigma = SS; end Sigma = repmat(Sigma, [1 1 Q]); end end Sigma = Sigma + cov_prior;