Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/beta_sample.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function r = betarnd(a,b,m,n); %BETARND Random matrices from beta distribution. % R = BETARND(A,B) returns a matrix of random numbers chosen % from the beta distribution with parameters A and B. % The size of R is the common size of A and B if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. Alternatively, R = BETARND(A,B,M,N) returns an M by N matrix. % Reference: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $ if nargin < 2, error('Requires at least two input arguments'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,a,b); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,a,b,m); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,a,b,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end r = zeros(rows,columns); % Use Theorem 4.1, case A (Devroye, page 430) to derive beta % random numbers as a ratio of gamma random numbers. if prod(size(a)) == 1 a1 = a(ones(rows,1),ones(columns,1)); g1 = gamrnd(a1,1); else g1 = gamrnd(a,1); end if prod(size(b)) == 1 b1 = b(ones(rows,1),ones(columns,1)); g2 = gamrnd(b1,1); else g2 = gamrnd(b,1); end r = g1 ./ (g1 + g2); % Return NaN if b is not positive. if any(any(b <= 0)); if prod(size(b) == 1) tmp = NaN; r = tmp(ones(rows,columns)); else k = find(b <= 0); tmp = NaN; r(k) = tmp(ones(size(k))); end end % Return NaN if a is not positive. if any(any(a <= 0)); if prod(size(a) == 1) tmp = NaN; r = tmp(ones(rows,columns)); else k = find(a <= 0); tmp = NaN; r(k) = tmp(ones(size(k))); end end