Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/mhmm_em.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [LL, prior, transmat, mu, Sigma, mixmat] = ... mhmm_em(data, prior, transmat, mu, Sigma, mixmat, varargin); % LEARN_MHMM Compute the ML parameters of an HMM with (mixtures of) Gaussians output using EM. % [ll_trace, prior, transmat, mu, sigma, mixmat] = learn_mhmm(data, ... % prior0, transmat0, mu0, sigma0, mixmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation, M(t) = mixture variable % % INPUTS: % data{ex}(:,t) or data(:,t,ex) if all sequences have the same length % prior(i) = Pr(Q(1) = i), % transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i) % mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k ] % Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k] % mixmat(j,k) = Pr(M(t)=k | Q(t)=j) : set to [] or ones(Q,1) if only one mixture component % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_mix' - if 0, do not change mixmat [1] % 'adj_mu' - if 0, do not change mu [1] % 'adj_Sigma' - if 0, do not change Sigma [1] % % If the number of mixture components differs depending on Q, just set the trailing % entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2, % then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0. if ~isstr(varargin{1}) % catch old syntax error('optional arguments should be passed as string/value pairs') end [max_iter, thresh, verbose, cov_type, adj_prior, adj_trans, adj_mix, adj_mu, adj_Sigma] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'cov_type', 'full', 'adj_prior', 1, 'adj_trans', 1, 'adj_mix', 1, ... 'adj_mu', 1, 'adj_Sigma', 1); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell end numex = length(data); O = size(data{1},1); Q = length(prior); if isempty(mixmat) mixmat = ones(Q,1); end M = size(mixmat,2); if M == 1 adj_mix = 0; end while (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans transmat = mk_stochastic(exp_num_trans); end if adj_mix mixmat = mk_stochastic(postmix); end if adj_mu | adj_Sigma [mu2, Sigma2] = mixgauss_Mstep(postmix, m, op, ip, 'cov_type', cov_type); if adj_mu mu = reshape(mu2, [O Q M]); end if adj_Sigma Sigma = reshape(Sigma2, [O O Q M]); end end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik]; end %%%%%%%%% function [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data) % ESS_MHMM Compute the Expected Sufficient Statistics for a MOG Hidden Markov Model. % % Outputs: % exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(Q(t-1) = i, Q(t) = j| Obs(l)) % exp_num_visits1(i) = sum_l Pr(Q(1)=i | Obs(l)) % % Let w(i,k,t,l) = P(Q(t)=i, M(t)=k | Obs(l)) % where Obs(l) = Obs(:,:,l) = O_1 .. O_T for sequence l % Then % postmix(i,k) = sum_l sum_t w(i,k,t,l) (posterior mixing weights/ responsibilities) % m(:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) % ip(i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)' * Obs(:,t,l) % op(:,:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) * Obs(:,t,l)' verbose = 0; %[O T numex] = size(data); numex = length(data); O = size(data{1},1); Q = length(prior); M = size(mixmat,2); exp_num_trans = zeros(Q,Q); exp_num_visits1 = zeros(Q,1); postmix = zeros(Q,M); m = zeros(O,Q,M); op = zeros(O,O,Q,M); ip = zeros(Q,M); mix = (M>1); loglik = 0; if verbose, fprintf(1, 'forwards-backwards example # '); end for ex=1:numex if verbose, fprintf(1, '%d ', ex); end %obs = data(:,:,ex); obs = data{ex}; T = size(obs,2); if mix [B, B2] = mixgauss_prob(obs, mu, Sigma, mixmat); [alpha, beta, gamma, current_loglik, xi, gamma2] = ... fwdback(prior, transmat, B, 'obslik2', B2, 'mixmat', mixmat); else B = mixgauss_prob(obs, mu, Sigma); [alpha, beta, gamma, current_loglik, xi] = fwdback(prior, transmat, B); end loglik = loglik + current_loglik; if verbose, fprintf(1, 'll at ex %d = %f\n', ex, loglik); end exp_num_trans = exp_num_trans + sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); if mix postmix = postmix + sum(gamma2,3); else postmix = postmix + sum(gamma,2); gamma2 = reshape(gamma, [Q 1 T]); % gamma2(i,m,t) = gamma(i,t) end for i=1:Q for k=1:M w = reshape(gamma2(i,k,:), [1 T]); % w(t) = w(i,k,t,l) wobs = obs .* repmat(w, [O 1]); % wobs(:,t) = w(t) * obs(:,t) m(:,i,k) = m(:,i,k) + sum(wobs, 2); % m(:) = sum_t w(t) obs(:,t) op(:,:,i,k) = op(:,:,i,k) + wobs * obs'; % op(:,:) = sum_t w(t) * obs(:,t) * obs(:,t)' ip(i,k) = ip(i,k) + sum(sum(wobs .* obs, 2)); % ip = sum_t w(t) * obs(:,t)' * obs(:,t) end end end if verbose, fprintf(1, '\n'); end